A167234 Smallest number such that no two divisors of n are congruent modulo a(n).
1, 2, 3, 4, 3, 6, 4, 5, 5, 6, 3, 7, 5, 8, 8, 9, 3, 10, 4, 7, 8, 6, 3, 13, 7, 7, 5, 11, 3, 11, 4, 9, 7, 6, 8, 13, 5, 5, 7, 11, 3, 16, 4, 12, 13, 6, 3, 17, 5, 11, 9, 7, 3, 10, 7, 15, 5, 5, 3, 21, 7, 7, 11, 11, 7, 14, 4, 7, 7, 16, 3, 13, 5, 10, 13, 7, 8, 14, 4, 17, 7, 6, 3, 23, 9, 8, 5, 13, 3, 19, 8, 12
Offset: 1
Keywords
Links
- Paul Tek, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
allDiffQ[l_List] := (Length[l] == Length[DeleteDuplicates[l]]); a[n_Integer] := Module[{ds = Divisors[n]}, Catch[Do[If[allDiffQ[Mod[#, m] & /@ ds], Throw[m]], {m, n}]]]; a /@ Range[92] (* Peter Illig, Jul 11 2018 *)
-
PARI
alldiff(v)=v=vecsort(v);for(k=1,#v-1,if(v[k]==v[k+1],return(0)));1 a(n)=local(ds);ds=divisors(n);for(k=#ds,n,if(alldiff(vector(#ds,i,ds[i]%k)),return(k)))
-
Python
from sympy import divisors from itertools import count def a(n): d = divisors(n) return next(k for k in count(1) if len(set(di%k for di in d))==len(d)) print([a(n) for n in range(1, 93)]) # Michael S. Branicky, Jan 30 2023
Comments