A167267 Interspersion of the signature sequence of (1+sqrt(5))/2.
1, 3, 2, 7, 5, 4, 12, 10, 8, 6, 19, 16, 14, 11, 9, 28, 24, 21, 18, 15, 13, 38, 34, 30, 26, 23, 20, 17, 50, 45, 41, 36, 32, 29, 25, 22, 63, 58, 53, 48, 43, 39, 35, 31, 27, 78, 72, 67, 61, 56, 51, 46, 42, 37, 33
Offset: 1
Examples
Northwest corner: 1....3....7....12...19...28...38 2....5....10...16...24...34...45 4....8....14...21...30...41...53 6....11...18...26...36...48...61 9....15...23...32...43...56...70 13...20...29...39...51...65...80
References
- Clark Kimberling, "Fractal Sequences and Interspersions," Ars Combinatoria 45 (1997) 157-168.
Links
- Clark Kimberling, Antidiagonals n = 1..60, flattened
- N. Carey, Lambda Words: A Class of Rich Words Defined Over an Infinite Alphabet, J. Int. Seq. 16 (2013) #13.3.4
Programs
-
Mathematica
v = GoldenRatio; x = Table[Sum[Ceiling[i*v], {i, q}], {q, 0, end = 35}]; y = Table[Sum[Ceiling[i*1/v], {i, q}], {q, 0, end}]; tot[p_, q_] := x[[p + 1]] + p q + 1 + y[[q + 1]] row[r_] := Table[tot[n, r], {n, 0, (end - 1)/v}] Grid[Table[row[n], {n, 0, (end - 1)}]] (* Norman Carey, Jul 03 2012 *)
-
PARI
\\ Produces the triangle when the array is read by antidiagonals r = (1+sqrt(5))/2; z = 100; s(n) = if(n<1, 1, s(n - 1) + 1 + floor(n*r)); p(n) = n + 1 + sum(k=0, n, floor((n - k)/r)); u = v = vector(z + 1); for(n=1, 101, (v[n] = s(n - 1))); for(n=1, 101, (u[n] = p(n - 1))); w(i, j) = v[i] + u[j] + (i - 1) * (j - 1) - 1; tabl(nn) = {for(n=1, nn, for(k=1, n, print1(w(n - k + 1, k), ", "); ); print(); ); }; tabl(10) \\ Indranil Ghosh, Mar 26 2017
-
Python
# Produces the triangle when the array is read by antidiagonals import math from sympy import sqrt r=(1 + sqrt(5))/2 def s(n): return 1 if n<1 else s(n - 1) + 1 + int(math.floor(n*r)) def p(n): return n + 1 + sum(int(math.floor((n - k)/r)) for k in range(n+1)) v=[s(n) for n in range(101)] u=[p(n) for n in range(101)] def w(i, j): return u[i - 1] + v[j - 1] + (i - 1) * (j - 1) - 1 for n in range(1, 11): print([w(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
Formula
R(m,n) = sum{[(m-i+n+r)/r], i=1,2,...z(m,n)}, where r = (1+sqrt(5))/2 and z(m,n) = m + [(n-1)*r]. - Clark Kimberling, Nov 10 2012
Comments