cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167267 Interspersion of the signature sequence of (1+sqrt(5))/2.

Original entry on oeis.org

1, 3, 2, 7, 5, 4, 12, 10, 8, 6, 19, 16, 14, 11, 9, 28, 24, 21, 18, 15, 13, 38, 34, 30, 26, 23, 20, 17, 50, 45, 41, 36, 32, 29, 25, 22, 63, 58, 53, 48, 43, 39, 35, 31, 27, 78, 72, 67, 61, 56, 51, 46, 42, 37, 33
Offset: 1

Views

Author

Clark Kimberling, Oct 31 2009

Keywords

Comments

Row n is the ordered sequence of numbers k such that A084531(k)=n. Is the difference sequence of column 1 equal to A019446? Is the difference sequence of row 1 essentially equal to A026351?
As a sequence, A167267 is a permutation of the positive integers. As an array, A167267 is the joint-rank array (defined at A182801) of the numbers {i+j*r}, for i>=1, j>=1, where r = golden ratio = (1+sqrt(5))/2. - Clark Kimberling, Nov 10 2012
This is a transposable interspersion; i.e., its transpose, A283734, is also an interspersion. - Clark Kimberling, Mar 16 2017

Examples

			Northwest corner:
1....3....7....12...19...28...38
2....5....10...16...24...34...45
4....8....14...21...30...41...53
6....11...18...26...36...48...61
9....15...23...32...43...56...70
13...20...29...39...51...65...80
		

References

  • Clark Kimberling, "Fractal Sequences and Interspersions," Ars Combinatoria 45 (1997) 157-168.

Crossrefs

Programs

  • Mathematica
    v = GoldenRatio;
    x = Table[Sum[Ceiling[i*v], {i, q}], {q, 0, end = 35}];
    y = Table[Sum[Ceiling[i*1/v], {i, q}], {q, 0, end}];
    tot[p_, q_] := x[[p + 1]] + p q + 1 + y[[q + 1]]
    row[r_] := Table[tot[n, r], {n, 0, (end - 1)/v}]
    Grid[Table[row[n], {n, 0, (end - 1)}]]
    (* Norman Carey, Jul 03 2012 *)
  • PARI
    \\ Produces the triangle when the array is read by antidiagonals
    r = (1+sqrt(5))/2;
    z = 100;
    s(n) = if(n<1, 1, s(n - 1) + 1 + floor(n*r));
    p(n) = n + 1 + sum(k=0, n, floor((n - k)/r));
    u = v = vector(z + 1);
    for(n=1, 101, (v[n] = s(n - 1)));
    for(n=1, 101, (u[n] = p(n - 1)));
    w(i, j) = v[i] + u[j] + (i - 1) * (j - 1) - 1;
    tabl(nn) = {for(n=1, nn, for(k=1, n, print1(w(n - k + 1, k), ", "); ); print(); ); };
    tabl(10) \\ Indranil Ghosh, Mar 26 2017
    
  • Python
    # Produces the triangle when the array is read by antidiagonals
    import math
    from sympy import sqrt
    r=(1 + sqrt(5))/2
    def s(n): return 1 if n<1 else s(n - 1) + 1 + int(math.floor(n*r))
    def p(n): return n + 1 + sum(int(math.floor((n - k)/r)) for k in range(n+1))
    v=[s(n) for n in range(101)]
    u=[p(n) for n in range(101)]
    def w(i, j): return u[i - 1] + v[j - 1] + (i - 1) * (j - 1) - 1
    for n in range(1, 11):
        print([w(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017

Formula

R(m,n) = sum{[(m-i+n+r)/r], i=1,2,...z(m,n)}, where r = (1+sqrt(5))/2 and z(m,n) = m + [(n-1)*r]. - Clark Kimberling, Nov 10 2012