cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167276 Primes p such that p^2=x^2+y^2-1 with x and y also prime.

Original entry on oeis.org

7, 13, 17, 23, 31, 37, 41, 43, 47, 53, 67, 73, 83, 89, 103, 107, 109, 137, 149, 151, 157, 163, 173, 191, 193, 227, 229, 233, 241, 263, 269, 293, 307, 311, 313, 317, 331, 337, 353, 359, 383, 389, 397, 401, 421, 431, 439, 443, 457, 463, 467, 487, 499, 523, 557, 577, 593, 599, 613, 619, 643, 683, 701, 727, 733, 757, 773, 829, 839, 853, 857, 863, 887, 947, 967, 977, 983, 997
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 01 2009

Keywords

Comments

Appears to be infinite.
Since (5*x+13)^2 + 1 = (3*x+7)^2 + (4*x+11)^2, it appears that there are infinitely many members of this sequence of the form 5*x+13 where x is an even number, that is the form of A030431(n). See the solution 78 at page 49 in the given reference (250 Problems in Elementary Number Theory) for the related conjecture. - Altug Alkan, Mar 30 2016

Examples

			a(1)=7 (x=5, y=5); a(2)=13 (x=7, y=11); a(3)=17 (x=11, y=17); a(4)=23 (x=13, y=19); a(5)=31 (x=11, y=31);...; a(21)=463 (x=461, y=43)
		

References

  • W. SierpiƄski, 250 Problems in Elementary Number Theory. New York: American Elsevier, Warsaw, 1970, Problem 78 page 7.

Crossrefs

Cf. A000040.

Programs

  • Maple
    isA045636 := proc(n) local p,q ; p := 2 ; while p^2+4 <= n do q := p ; while p^2+q^2 <= n do if q^2+p^2 = n then return true; end if ; q := nextprime(q) ; end do ; p := nextprime(p) ; end do ; return false ; end proc: A066872 := proc(n) ithprime(n)^2+1 ; end: for n from 1 to 200 do if isA045636(A066872(n)) then printf("%d,",ithprime(n)) ; end if ; end do ; # R. J. Mathar, Nov 09 2009
  • Mathematica
    Select[Prime@ Range@ 168, Resolve[Exists[{x, y}, Reduce[#^2 == x^2 + y^2 - 1, {x, y}, Primes]]] &] (* Michael De Vlieger, Mar 30 2016 *)

Formula

{ A000040(i): A066872(i) in A045636}. [R. J. Mathar, Nov 09 2009]

Extensions

Edited and extended by Daniel Platt, Nov 02 2009