A167276 Primes p such that p^2=x^2+y^2-1 with x and y also prime.
7, 13, 17, 23, 31, 37, 41, 43, 47, 53, 67, 73, 83, 89, 103, 107, 109, 137, 149, 151, 157, 163, 173, 191, 193, 227, 229, 233, 241, 263, 269, 293, 307, 311, 313, 317, 331, 337, 353, 359, 383, 389, 397, 401, 421, 431, 439, 443, 457, 463, 467, 487, 499, 523, 557, 577, 593, 599, 613, 619, 643, 683, 701, 727, 733, 757, 773, 829, 839, 853, 857, 863, 887, 947, 967, 977, 983, 997
Offset: 1
Keywords
Examples
a(1)=7 (x=5, y=5); a(2)=13 (x=7, y=11); a(3)=17 (x=11, y=17); a(4)=23 (x=13, y=19); a(5)=31 (x=11, y=31);...; a(21)=463 (x=461, y=43)
References
- W. SierpiĆski, 250 Problems in Elementary Number Theory. New York: American Elsevier, Warsaw, 1970, Problem 78 page 7.
Crossrefs
Cf. A000040.
Programs
-
Maple
isA045636 := proc(n) local p,q ; p := 2 ; while p^2+4 <= n do q := p ; while p^2+q^2 <= n do if q^2+p^2 = n then return true; end if ; q := nextprime(q) ; end do ; p := nextprime(p) ; end do ; return false ; end proc: A066872 := proc(n) ithprime(n)^2+1 ; end: for n from 1 to 200 do if isA045636(A066872(n)) then printf("%d,",ithprime(n)) ; end if ; end do ; # R. J. Mathar, Nov 09 2009
-
Mathematica
Select[Prime@ Range@ 168, Resolve[Exists[{x, y}, Reduce[#^2 == x^2 + y^2 - 1, {x, y}, Primes]]] &] (* Michael De Vlieger, Mar 30 2016 *)
Formula
Extensions
Edited and extended by Daniel Platt, Nov 02 2009
Comments