cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167295 Totally multiplicative sequence with a(p) = 3*(p-2) for prime p.

This page as a plain text file.
%I A167295 #14 Oct 19 2023 02:16:09
%S A167295 1,0,3,0,9,0,15,0,9,0,27,0,33,0,27,0,45,0,51,0,45,0,63,0,81,0,27,0,81,
%T A167295 0,87,0,81,0,135,0,105,0,99,0,117,0,123,0,81,0,135,0,225,0,135,0,153,
%U A167295 0,243,0,153,0,171,0,177,0,135,0,297,0,195,0,189,0,207
%N A167295 Totally multiplicative sequence with a(p) = 3*(p-2) for prime p.
%H A167295 G. C. Greubel, <a href="/A167295/b167295.txt">Table of n, a(n) for n = 1..1000</a>
%F A167295 Multiplicative with a(p^e) = (3*(p-2))^e. If n = Product p(k)^e(k) then a(n) = Product (3*(p(k)-2))^e(k).
%F A167295 a(2k) = 0 for k >= 1.
%F A167295 a(n) = A165824(n) * A166586(n) = 3^bigomega(n) * A166586(n) = 3^A001222(n) * A166586(n).
%t A167295 a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 2)^fi[[All, 2]])); Table[a[n]*3^PrimeOmega[n], {n, 1, 100}](* _G. C. Greubel_, Jun 05 2016 *)
%t A167295 f[p_, e_] := (3*(p-2))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Oct 19 2023 *)
%Y A167295 Cf. A001222, A165824, A166586.
%K A167295 nonn,easy,mult
%O A167295 1,3
%A A167295 _Jaroslav Krizek_, Nov 01 2009