This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167297 #12 Oct 21 2023 05:33:23 %S A167297 1,0,5,0,15,0,25,0,25,0,45,0,55,0,75,0,75,0,85,0,125,0,105,0,225,0, %T A167297 125,0,135,0,145,0,225,0,375,0,175,0,275,0,195,0,205,0,375,0,225,0, %U A167297 625,0,375,0,255,0,675,0,425,0,285,0,295,0,625,0,825,0,325,0,525 %N A167297 Totally multiplicative sequence with a(p) = 5*(p-2) for prime p. %H A167297 G. C. Greubel, <a href="/A167297/b167297.txt">Table of n, a(n) for n = 1..1000</a> %F A167297 Multiplicative with a(p^e) = (5*(p-2))^e. If n = Product p(k)^e(k) then a(n) = Product (5*(p(k)-2))^e(k). %F A167297 a(2k) = 0 for k >= 1. %F A167297 a(n) = A165826(n) * A166586(n) = 5^bigomega(n) * A166586(n) = 5^A001222(n) * A166586(n). %t A167297 a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 2)^fi[[All, 2]])); Table[a[n]*5^PrimeOmega[n], {n, 1, 100}] (* _G. C. Greubel_, Jun 07 2016 *) %t A167297 f[p_, e_] := (5*(p-2))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Oct 21 2023 *) %Y A167297 Cf. A001222, A165826, A166586. %K A167297 nonn,easy,mult %O A167297 1,3 %A A167297 _Jaroslav Krizek_, Nov 01 2009