This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167299 #12 Oct 21 2023 05:34:04 %S A167299 1,0,7,0,21,0,35,0,49,0,63,0,77,0,147,0,105,0,119,0,245,0,147,0,441,0, %T A167299 343,0,189,0,203,0,441,0,735,0,245,0,539,0,273,0,287,0,1029,0,315,0, %U A167299 1225,0,735,0,357,0,1323,0,833,0,399,0,413,0,1715,0,1617,0,455 %N A167299 Totally multiplicative sequence with a(p) = 7*(p-2) for prime p. %H A167299 G. C. Greubel, <a href="/A167299/b167299.txt">Table of n, a(n) for n = 1..1000</a> %F A167299 Multiplicative with a(p^e) = (7*(p-2))^e. If n = Product p(k)^e(k) then a(n) = Product (7*(p(k)-2))^e(k). %F A167299 a(2k) = 0 for k >= 1. %F A167299 a(n) = A165828(n) * A166586(n) = 7^bigomega(n) * A166586(n) = 7^A001222(n) * A166586(n). %t A167299 a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 2)^fi[[All, 2]])); Table[a[n]*7^PrimeOmega[n], {n, 1, 100}] (* _G. C. Greubel_, Jun 07 2016 *) %t A167299 f[p_, e_] := (7*(p-2))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Oct 21 2023 *) %Y A167299 Cf. A001222, A165828, A166586. %K A167299 nonn,easy,mult %O A167299 1,3 %A A167299 _Jaroslav Krizek_, Nov 01 2009