This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167307 #12 Oct 19 2023 02:15:50 %S A167307 1,24,30,576,42,720,54,13824,900,1008,78,17280,90,1296,1260,331776, %T A167307 114,21600,126,24192,1620,1872,150,414720,1764,2160,27000,31104,186, %U A167307 30240,198,7962624,2340,2736,2268,518400,234,3024,2700,580608,258,38880,270 %N A167307 Totally multiplicative sequence with a(p) = 6*(p+2) for prime p. %H A167307 G. C. Greubel, <a href="/A167307/b167307.txt">Table of n, a(n) for n = 1..1000</a> %F A167307 Multiplicative with a(p^e) = (6*(p+2))^e. If n = Product p(k)^e(k) then a(n) = Product (6*(p(k)+2))^e(k). %F A167307 a(n) = A165827(n) * A166590(n) = 6^bigomega(n) * A166590(n) = 6^A001222(n) * A166590(n). %t A167307 a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 2)^fi[[All, 2]])); Table[a[n]*6^PrimeOmega[n], {n, 1, 100}] (* _G. C. Greubel_, Jun 07 2016 *) %t A167307 f[p_, e_] := (6*(p+2))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Oct 19 2023 *) %Y A167307 Cf. A001222, A165827, A166590. %K A167307 nonn,easy,mult %O A167307 1,2 %A A167307 _Jaroslav Krizek_, Nov 01 2009