cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167310 Totally multiplicative sequence with a(p) = 9*(p+2) for prime p.

This page as a plain text file.
%I A167310 #13 Oct 19 2023 02:16:42
%S A167310 1,36,45,1296,63,1620,81,46656,2025,2268,117,58320,135,2916,2835,
%T A167310 1679616,171,72900,189,81648,3645,4212,225,2099520,3969,4860,91125,
%U A167310 104976,279,102060,297,60466176,5265,6156,5103,2624400,351,6804,6075,2939328,387,131220,405
%N A167310 Totally multiplicative sequence with a(p) = 9*(p+2) for prime p.
%H A167310 G. C. Greubel, <a href="/A167310/b167310.txt">Table of n, a(n) for n = 1..1000</a>
%F A167310 Multiplicative with a(p^e) = (9*(p+2))^e. If n = Product p(k)^e(k) then a(n) = Product (9*(p(k)+2))^e(k).
%F A167310 a(n) = A165830(n) * A166590(n) = 9^bigomega(n) * A166590(n) = 9^A001222(n) * A166590(n).
%t A167310 a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 2)^fi[[All, 2]])); Table[a[n]*9^PrimeOmega[n], {n, 1, 100}] (* _G. C. Greubel_, Jun 07 2016 *)
%t A167310 f[p_, e_] := (9*(p+2))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Oct 19 2023 *)
%Y A167310 Cf. A001222, A165830, A166590.
%K A167310 nonn,easy,mult
%O A167310 1,2
%A A167310 _Jaroslav Krizek_, Nov 01 2009