cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167311 Totally multiplicative sequence with a(p) = 10*(p+2) for prime p.

This page as a plain text file.
%I A167311 #12 Oct 18 2023 02:09:49
%S A167311 1,40,50,1600,70,2000,90,64000,2500,2800,130,80000,150,3600,3500,
%T A167311 2560000,190,100000,210,112000,4500,5200,250,3200000,4900,6000,125000,
%U A167311 144000,310,140000,330,102400000,6500,7600,6300,4000000,390,8400,7500
%N A167311 Totally multiplicative sequence with a(p) = 10*(p+2) for prime p.
%H A167311 G. C. Greubel, <a href="/A167311/b167311.txt">Table of n, a(n) for n = 1..1000</a>
%F A167311 Multiplicative with a(p^e) = (10*(p+2))^e. If n = Product p(k)^e(k) then a(n) = Product (10*(p(k)+2))^e(k).
%F A167311 a(n) = A165831(n) * A166590(n) = 10^bigomega(n) * A166590(n) = 10^A001222(n) * A166590(n).
%t A167311 a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 2)^fi[[All, 2]])); Table[a[n]*10^PrimeOmega[n], {n, 1, 100}] (* _G. C. Greubel_, Jun 07 2016 *)
%t A167311 f[p_, e_] := (10*(p+2))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Oct 18 2023 *)
%Y A167311 Cf. A001222, A165831, A166590.
%K A167311 nonn,easy,mult
%O A167311 1,2
%A A167311 _Jaroslav Krizek_, Nov 01 2009