This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167312 #12 Oct 21 2023 05:33:53 %S A167312 1,-2,0,4,4,0,8,-8,0,-8,16,0,20,-16,0,16,28,0,32,16,0,-32,40,0,16,-40, %T A167312 0,32,52,0,56,-32,0,-56,32,0,68,-64,0,-32,76,0,80,64,0,-80,88,0,64, %U A167312 -32,0,80,100,0,64,-64,0,-104,112,0,116,-112,0,64,80,0,128,112 %N A167312 Totally multiplicative sequence with a(p) = 2*(p-3) for prime p. %H A167312 G. C. Greubel, <a href="/A167312/b167312.txt">Table of n, a(n) for n = 1..1000</a> %F A167312 Multiplicative with a(p^e) = (2*(p-3))^e. If n = Product p(k)^e(k) then a(n) = Product (2*(p(k)-3))^e(k). %F A167312 a(3k) = 0 for k >= 1. %F A167312 a(n) = A061142(n) * A166589(n) = 2^bigomega(n) * A166589(n) = 2^A001222(n) * A166589(n). %t A167312 a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 3)^fi[[All, 2]])); Table[a[n]*2^PrimeOmega[n], {n, 1, 100}] (* _G. C. Greubel_, Jun 08 2016 *) %t A167312 f[p_, e_] := (2*(p-3))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Oct 21 2023 *) %Y A167312 Cf. A001222, A061142, A166589. %K A167312 sign,easy,mult %O A167312 1,2 %A A167312 _Jaroslav Krizek_, Nov 01 2009