This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167317 #12 Oct 22 2023 00:50:38 %S A167317 1,-7,0,49,14,0,28,-343,0,-98,56,0,70,-196,0,2401,98,0,112,686,0,-392, %T A167317 140,0,196,-490,0,1372,182,0,196,-16807,0,-686,392,0,238,-784,0,-4802, %U A167317 266,0,280,2744,0,-980,308,0,784,-1372,0,3430,350,0,784,-9604,0,-1274 %N A167317 Totally multiplicative sequence with a(p) = 7*(p-3) for prime p. %H A167317 G. C. Greubel, <a href="/A167317/b167317.txt">Table of n, a(n) for n = 1..1000</a> %F A167317 Multiplicative with a(p^e) = (7*(p-3))^e. If n = Product p(k)^e(k) then a(n) = Product (7*(p(k)-3))^e(k). %F A167317 a(3k) = 0 for k >= 1. %F A167317 a(n) = A165828(n) * A166589(n) = 7^bigomega(n) * A166589(n) = 7^A001222(n) * A166589(n). %t A167317 a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 3)^fi[[All, 2]])); Table[a[n]*7^PrimeOmega[n], {n, 1, 100}] (* _G. C. Greubel_, Jun 09 2016 *) %t A167317 f[p_, e_] := (7*(p-3))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Oct 22 2023 *) %Y A167317 Cf. A001222, A165828, A166589. %K A167317 sign,easy,mult %O A167317 1,2 %A A167317 _Jaroslav Krizek_, Nov 01 2009