cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167322 Totally multiplicative sequence with a(p) = 3*(p+3) for prime p.

This page as a plain text file.
%I A167322 #12 Oct 22 2023 00:51:22
%S A167322 1,15,18,225,24,270,30,3375,324,360,42,4050,48,450,432,50625,60,4860,
%T A167322 66,5400,540,630,78,60750,576,720,5832,6750,96,6480,102,759375,756,
%U A167322 900,720,72900,120,990,864,81000,132,8100,138,9450,7776,1170,150,911250,900
%N A167322 Totally multiplicative sequence with a(p) = 3*(p+3) for prime p.
%H A167322 G. C. Greubel, <a href="/A167322/b167322.txt">Table of n, a(n) for n = 1..1000</a>
%F A167322 Multiplicative with a(p^e) = (3*(p+3))^e. If n = Product p(k)^e(k) then a(n) = Product (3*(p(k)+3))^e(k).
%F A167322 a(n) = A165824(n) * A166591(n) = 3^bigomega(n) * A166591(n) = 3^A001222(n) * A166591(n).
%t A167322 a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 3)^fi[[All, 2]])); Table[a[n]*3^PrimeOmega[n], {n, 1, 100}] (* _G. C. Greubel_, Jun 09 2016 *)
%t A167322 f[p_, e_] := (3*(p+3))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Oct 22 2023 *)
%Y A167322 Cf. A001222, A165824, A166591.
%K A167322 nonn,easy,mult
%O A167322 1,2
%A A167322 _Jaroslav Krizek_, Nov 01 2009