This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167327 #12 Oct 21 2023 05:33:34 %S A167327 1,40,48,1600,64,1920,80,64000,2304,2560,112,76800,128,3200,3072, %T A167327 2560000,160,92160,176,102400,3840,4480,208,3072000,4096,5120,110592, %U A167327 128000,256,122880,272,102400000,5376,6400,5120,3686400,320,7040,6144,4096000,352,153600 %N A167327 Totally multiplicative sequence with a(p) = 8*(p+3) for prime p. %H A167327 G. C. Greubel, <a href="/A167327/b167327.txt">Table of n, a(n) for n = 1..1000</a> %F A167327 Multiplicative with a(p^e) = (8*(p+3))^e. If n = Product p(k)^e(k) then a(n) = Product (8*(p(k)+3))^e(k). %F A167327 a(n) = A165829(n) * A166591(n) = 8^bigomega(n) * A166591(n) = 8^A001222(n) * A166591(n). %t A167327 a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 3)^fi[[All, 2]])); Table[a[n]*8^PrimeOmega[n], {n, 1, 100}] (* _G. C. Greubel_, Jun 09 2016 *) %t A167327 f[p_, e_] := (8*(p+3))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Oct 21 2023 *) %Y A167327 Cf. A001222, A165829, A166591. %K A167327 nonn,easy,mult %O A167327 1,2 %A A167327 _Jaroslav Krizek_, Nov 01 2009