This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167331 #14 Oct 18 2023 02:10:04 %S A167331 1,10,16,100,28,160,40,1000,256,280,64,1600,76,400,448,10000,100,2560, %T A167331 112,2800,640,640,136,16000,784,760,4096,4000,172,4480,184,100000, %U A167331 1024,1000,1120,25600,220,1120,1216,28000,244,6400,256,6400,7168,1360,280 %N A167331 Totally multiplicative sequence with a(p) = 2*(3p-1) = 6p-2 for prime p. %H A167331 G. C. Greubel, <a href="/A167331/b167331.txt">Table of n, a(n) for n = 1..1000</a> %F A167331 Multiplicative with a(p^e) = (2*(3p-1))^e. If n = Product p(k)^e(k) then a(n) = Product (2*(3*p(k)-1))^e(k). %F A167331 a(n) = A061142(n) * A166652(n) = 2^bigomega(n) * A166652(n) = 2^A001222(n) * A166652(n). %t A167331 a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((3*fi[[All, 1]] - 1)^fi[[All, 2]])); Table[a[n]*2^PrimeOmega[n], {n, 1, 100}] (* _G. C. Greubel_, Jun 06 2016 *) %t A167331 f[p_, e_] := (6*p-2)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Oct 18 2023 *) %o A167331 (PARI) a(n) = {my(f=factor(n)); for (k=1, #f~, f[k,1] = 6*f[k,1]-2;); factorback(f);} \\ _Michel Marcus_, Jun 06 2016 %Y A167331 Cf. A001222, A061142, A166652. %K A167331 nonn,easy,mult %O A167331 1,2 %A A167331 _Jaroslav Krizek_, Nov 01 2009