This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167332 #21 Jun 10 2025 23:33:12 %S A167332 1,14,22,196,38,308,54,2744,484,532,86,4312,102,756,836,38416,134, %T A167332 6776,150,7448,1188,1204,182,60368,1444,1428,10648,10584,230,11704, %U A167332 246,537824,1892,1876,2052,94864,294,2100,2244,104272,326,16632,342,16856 %N A167332 Totally multiplicative sequence with a(p) = 2*(4*p-1) = 8*p-2 for prime p. %H A167332 G. C. Greubel, <a href="/A167332/b167332.txt">Table of n, a(n) for n = 1..1000</a> %F A167332 Multiplicative with a(p^e) = (2*(4*p-1))^e. If n = Product p(k)^e(k) then a(n) = Product (2*(4*p(k)-1))^e(k). %F A167332 a(n) = A061142(n) * A166653(n) = 2^bigomega(n) * A166653(n) = 2^A001222(n) * A166653(n). %p A167332 f:=n -> mul((8*t[1]-2)^t[2],t=ifactors(n)[2]): %p A167332 map(f, [$1..100]); # _Robert Israel_, Jun 06 2016 %t A167332 a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((4*fi[[All, 1]] - 1)^fi[[All, 2]])); Table[a[n]*2^PrimeOmega[n], {n, 1, 100}] (* _G. C. Greubel_, Jun 06 2016 *) %t A167332 f[p_, e_] := (8*p-2)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Oct 18 2023 *) %o A167332 (PARI) a(n) = {my(f=factor(n)); for (k=1, #f~, f[k,1] = 8*f[k,1]-2;); factorback(f);} \\ _Michel Marcus_, Jun 06 2016 %Y A167332 Cf. A001222, A061142, A166653. %K A167332 nonn,easy,mult %O A167332 1,2 %A A167332 _Jaroslav Krizek_, Nov 01 2009