cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167336 Totally multiplicative sequence with a(p) = 2*(4p+1) = 8p+2 for prime p.

This page as a plain text file.
%I A167336 #12 Oct 19 2023 02:16:32
%S A167336 1,18,26,324,42,468,58,5832,676,756,90,8424,106,1044,1092,104976,138,
%T A167336 12168,154,13608,1508,1620,186,151632,1764,1908,17576,18792,234,19656,
%U A167336 250,1889568,2340,2484,2436,219024,298,2772,2756,244944,330,27144,346
%N A167336 Totally multiplicative sequence with a(p) = 2*(4p+1) = 8p+2 for prime p.
%H A167336 G. C. Greubel, <a href="/A167336/b167336.txt">Table of n, a(n) for n = 1..1000</a>
%F A167336 Multiplicative with a(p^e) = (2*(4p+1))^e. If n = Product p(k)^e(k) then a(n) = Product (2*(4*p(k)+1))^e(k).
%F A167336 a(n) = A061142(n) * A166662(n) = 2^bigomega(n) * A166662(n) = 2^A001222(n) * A166662(n).
%t A167336 a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((4*fi[[All, 1]] + 1)^fi[[All, 2]])); Table[a[n]*2^PrimeOmega[n], {n, 1, 100}] (* _G. C. Greubel_, Jun 06 2016 *)
%t A167336 f[p_, e_] := (8*p+2)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Oct 19 2023 *)
%Y A167336 Cf. A001222, A061142, A166662.
%K A167336 nonn,easy,mult
%O A167336 1,2
%A A167336 _Jaroslav Krizek_, Nov 01 2009