cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167337 Totally multiplicative sequence with a(p) = 2*(5p+1) = 10p+2 for prime p.

This page as a plain text file.
%I A167337 #12 Oct 19 2023 02:16:27
%S A167337 1,22,32,484,52,704,72,10648,1024,1144,112,15488,132,1584,1664,234256,
%T A167337 172,22528,192,25168,2304,2464,232,340736,2704,2904,32768,34848,292,
%U A167337 36608,312,5153632,3584,3784,3744,495616,372,4224,4224,553696,412,50688
%N A167337 Totally multiplicative sequence with a(p) = 2*(5p+1) = 10p+2 for prime p.
%H A167337 G. C. Greubel, <a href="/A167337/b167337.txt">Table of n, a(n) for n = 1..1000</a>
%F A167337 Multiplicative with a(p^e) = (2*(5p+1))^e. If n = Product p(k)^e(k) then a(n) = Product (2*(5*p(k)+1))^e(k).
%F A167337 a(n) = A061142(n) * A166663(n) = 2^bigomega(n) * A166663(n) = 2^A001222(n) * A166663(n).
%t A167337 a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((5*fi[[All, 1]] + 1)^fi[[All, 2]])); Table[a[n]*2^PrimeOmega[n], {n, 1, 100}] (* _G. C. Greubel_, Jun 06 2016 *)
%t A167337 f[p_, e_] := (10*p+2)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Oct 19 2023 *)
%Y A167337 Cf. A001222, A061142, A166663.
%K A167337 nonn,easy,mult
%O A167337 1,2
%A A167337 _Jaroslav Krizek_, Nov 01 2009