cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167371 Triangle, read by rows, given by [0,1,-1,0,0,0,0,0,0,0,0,...] DELTA [1,0,-1,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 02 2009

Keywords

Comments

Diagonal sums: A060576.
A167374*A154325 formatted as lower triangular matrix. - Philippe Deléham, Nov 19 2009

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 1;
  0, 0, 1, 1;
  0, 0, 0, 1, 1;
  0, 0, 0, 0, 1, 1; ...
		

Crossrefs

Formula

Sum_{k=0..n} T(n,k)*x^k = A000007(n), A046698(n+1), A111286(n+1), A027327(n) for x= 0, 1, 2, 3 respectively.
G.f.: (1+x^2*y)/(1-x*y). - Philippe Deléham, Nov 09 2013
T(n,k) = T(n-1,k-1) for n > 2, T(0,0) = T(1,1) = T(2,1) = T(2,2) = 1, T(1,0) = T(2,0) = 0, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Nov 09 2013