This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167387 #29 Mar 24 2025 13:49:34 %S A167387 1,-2,0,10,-35,84,-168,300,-495,770,-1144,1638,-2275,3080,-4080,5304, %T A167387 -6783,8550,-10640,13090,-15939,19228,-23000,27300,-32175,37674, %U A167387 -43848,50750,-58435,66960,-76384,86768,-98175,110670,-124320,139194,-155363,172900 %N A167387 a(n) = (-1)^(n+1) * n*(n-1)*(n-4)*(n+1)/12. %C A167387 The coefficient of [x^4] of the Polynomial B_{2n}(x) defined in A137276. %C A167387 Essentially the same as A052472. %H A167387 G. C. Greubel, <a href="/A167387/b167387.txt">Table of n, a(n) for n = 2..1000</a> %H A167387 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (-5,-10,-10,-5,-1). %F A167387 a(n) = -5*a(n-1) -10*a(n-2) -10*a(n-3) -5*a(n-4) -a(n-5). %F A167387 G.f.: x^2*(1+3*x)/(1+x)^5. %F A167387 E.g.f.: x^2*(6 + 2*x - x^2)*exp(-x)/12. - _G. C. Greubel_, May 19 2019 %t A167387 Table[(-1)^(n+1)*(n+1)*n*(n-1)*(n-4)/12, {n, 2, 40}] (* _G. C. Greubel_, Jun 12 2016 *) %t A167387 LinearRecurrence[{-5, -10, -10, -5, -1}, {1, -2, 0, 10, -35}, 40] (* _Vincenzo Librandi_, Jun 13 2016 *) %o A167387 (Magma) [(-1)^(n+1)*n*(n-1)*(n-4)*(n+1)/12: n in [2..40]]; // _Vincenzo Librandi_, Jun 13 2016 %o A167387 (PARI) vector(40, n, n++; (-1)^(n+1)*(n-4)*binomial(n+1,3)/2) \\ _G. C. Greubel_, May 19 2019 %o A167387 (Sage) [(-1)^(n+1)*(n-4)*binomial(n+1,3)/2 for n in (2..40)] # _G. C. Greubel_, May 19 2019 %o A167387 (GAP) List([2..40], n-> (-1)^(n+1)*(n-4)*Binomial(n+1,3)/2); # _G. C. Greubel_, May 19 2019 %Y A167387 Cf. A052472, A137276, A135929, A138034. %K A167387 sign,easy %O A167387 2,2 %A A167387 _Jamel Ghanouchi_, Nov 02 2009