This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167408 #30 Mar 19 2023 20:20:03 %S A167408 1,2,5,7,8,9,11,12,13,17,19,20,23,27,29,31,37,38,41,43,47,52,53,57,58, %T A167408 59,61,67,68,71,72,73,76,79,83,87,89,97,101,103,107,109,113,117,118, %U A167408 124,127,131,133,137,139,149,151,157,158,162,163,164,167,173,177,178,179 %N A167408 Orderly numbers: a number n is orderly if there exists some number k > tau(n) such that the set of the divisors of n is congruent to the set {1,2,...,tau(n)} mod k. %C A167408 n: {divisors(n)} == {1,2,...,tau(n)} mod k %C A167408 ------------------------------------------- %C A167408 1: {1} == {1} mod 2 %C A167408 2: {1,2} == {1,2} mod 3 %C A167408 5: {1,5} == {1,2} mod 3 %C A167408 7: {1,7} == {1,2} mod 5 %C A167408 8: {1,2,8,4} == {1,2,3,4} mod 5 %C A167408 9: {1,9,3} == {1,2,3} mod 7 %C A167408 11: {1,11} == {1,2} mod 3 or 9 %C A167408 12: {1,2,3,4,12,6} == {1,2,3,4,5,6} mod 7 %C A167408 13: {1,13} == {1,2} mod 11 %C A167408 17: {1,17} == {1,2} mod 3,5, or 15 %C A167408 19: {1,19} == 1,2 mod 17 %C A167408 20: {1,2,10,4,5,20} == {1,2,3,4,5,6} mod 7 %C A167408 23: {1,23} == {1,2} mod 3,7, or 21 %C A167408 27: {1,27,3,9} == {1,2,3,4} mod 5 %C A167408 29: {1,29} == {1,2} mod 3,9, or 27 %C A167408 31: {1,31} == {1,2} mod 29 %C A167408 37: {1,37} == 1,2 mod 5,7, or 35 %C A167408 38: {1,2,38,19} == {1,2,3,4} mod 5 %C A167408 41: {1,41} == {1,2} mod 3,13, or 39 %C A167408 43: {1,43} == {1,2} mod 41 %C A167408 47: {1,47} == {1,2} mod 3,5,9,15, or 45 %C A167408 52: {1,2,52,4,26,13} == {1,2,3,4,5,6} mod 7 %C A167408 53: {1,53} == {1,2} mod 3,17, or 51 %C A167408 57: {1,57,3,19} == {1,2,3,4} mod 5 %C A167408 58: {1,2,58,29} == {1,2,3,4} mod 5 %C A167408 59: {1,59} == {1,2} mod 3,19, or 57 %C A167408 61: {1,61} == {1,2} mod 59 %C A167408 67: {1,67} == {1,2} mod 5,13, or 65 %C A167408 68: {1,2,17,4,68,34} == {1,2,3,4,5,6} mod 7 %C A167408 71: {1,71} == {1,2} mod 3,23, or 69 %C A167408 72: {1,2,3,4,18,6,72,8,9,36,24,12} == {1,2,3,4,5,6,7,8,9,10,11,12} mod 13 %C A167408 73: {1,73} == {1,2} mod 71 %C A167408 76: {1,2,38,4,19,76} == {1,2,3,4,5,6} mod 7 %C A167408 79: {1,79} == {1,2} mod 7,11, or 77 %C A167408 83: {1,83} == {1,2} mod 3,9,27, or 81 %C A167408 87: {1,87,3,29} == {1,2,3,4} mod 5 %C A167408 89: {1,89} == {1,2} mod 3,29, or 87 %C A167408 97: {1,97} == {1,2} mod 5,19, or 95 %C A167408 The primes other than 3 are orderly. %C A167408 Numbers of the form 4p are orderly when p is an odd prime congruent to 3,5, or 6 mod 7. %C A167408 For primes, k values can be p-2 or a divisor of p-2 other than 1. %C A167408 T. D. Noe observed that for composite orderly numbers, n, k seems to be one of the three values: tau(n)+1, tau(n)+3, tau(n)+4. %C A167408 The composite numbers with k = tau(n)+4 are of the form p^2, where prime p == 3 mod 7. %C A167408 The orderly numbers with k = tau(n)+3 come in many forms. See A168003. It appears that tau(n)+3 is a prime with primitive root 2 (A001122). %C A167408 The forms for composite orderly numbers with k = tau(n)+1 are too numerous to list here, but seem to occur for any prime k > 3. %C A167408 Let p be any prime. Then p^(m-2) is in this sequence if m is a prime with primitive root p. For example, 2^(m-2) is here for every m in A001122; 3^(m-2) is here for every m in A019334; 5^(m-2) is here for every m in A019335. For every prime p, there appear to be an infinite number of prime powers p^(m-2) here. All these numbers are actually very orderly (A167409) because we can choose k = tau(n)+1. - _T. D. Noe_, Nov 04 2009 %H A167408 A. Weimholt, <a href="/A167408/b167408.txt">Table of n, a(n) for n = 1..10000</a> %H A167408 Bill McEachen, <a href="/A167408/a167408.jpg">A167408/A002858</a> %e A167408 12 is an orderly number because 12's divisors are 1,2,3,4,6,12 and %e A167408 1 == 1 (mod 7) %e A167408 2 == 2 (mod 7) %e A167408 3 == 3 (mod 7) %e A167408 4 == 4 (mod 7) %e A167408 12 == 5 (mod 7) %e A167408 6 == 6 (mod 7) %t A167408 orderlyQ[n_] := (For[dd = Divisors[n]; tau = Length[dd]; k = 3, k <= Max[tau + 4, Last[dd] - 2], k++, If[ Union[ Mod[dd, k]] == Range[tau], Return[True]]]; False); Select[ Range[180], orderlyQ] (* _Jean-François Alcover_, Aug 19 2013 *) %Y A167408 Cf. A167409 = very orderly numbers (k = tau(n) + 1). %Y A167408 Cf. A167410 = disorderly numbers = numbers not in this sequence. %Y A167408 Cf. A167411 = minimal k values for the orderly numbers. %K A167408 nonn,nice %O A167408 1,2 %A A167408 _Andrew Weimholt_, Nov 03 2009 %E A167408 Minor editing by _N. J. A. Sloane_, Nov 06 2009 %E A167408 Information about the tau(n)+3 orderly numbers corrected by _T. D. Noe_, Nov 16 2009