This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167415 #23 May 17 2024 09:56:06 %S A167415 2,3,6,7,13,14,17,21,23,26,34,37,39,42,43,46,47,51,53,67,69,73,74,78, %T A167415 83,86,91,94,97,102,103,106,107,111,113,119,127,129,134,137,138,141, %U A167415 146,157,159,161,163,166,167,173,182,193,194,197,201,206,214,219 %N A167415 Positive integers k such that there is no solution of the equation x^2 + y^2 + 3*x*y = 0 in Z/nZ except for the trivial one (0,0). %C A167415 Prime numbers of this sequence are congruent to {2,3} modulo 5. %e A167415 The only solution of the equation x^2 + y^2 + 3*x*y = 0 in Z/2Z is (0,0). %e A167415 4 is not in the sequence because 0^2 + 2^2 + 3*2*0 = 4 == 0 (mod 4). 5 is not in the sequence because 1^2 + 1^2 + 3*1*1 = 5 == 0 (mod 5). 10 is not in the sequence because 2^2 + 2^2 + 3*2*2 = 20 == 0 (mod 10). - _R. J. Mathar_, Jun 16 2019 %p A167415 isA167415 := proc(n) %p A167415 local x,y ; %p A167415 for x from 0 to n-1 do %p A167415 for y from x to n-1 do %p A167415 if modp(x^2+y^2+3*x*y,n) = 0 and (x <> 0 or y <> 0) then %p A167415 return false; %p A167415 end if; %p A167415 end do: %p A167415 end do: %p A167415 true ; %p A167415 end proc: %p A167415 for n from 2 to 300 do %p A167415 if isA167415(n) then %p A167415 printf("%d,",n) ; %p A167415 end if; %p A167415 end do: # _R. J. Mathar_, Jun 16 2019 %Y A167415 Cf. A031363 (x^2 + y^2 + 3xy). %K A167415 easy,nonn %O A167415 1,1 %A A167415 _Arnaud Vernier_, Nov 03 2009 %E A167415 Name corrected by _R. J. Mathar_, Jun 16 2019 and _Don Reble_