A167416 Smallest prime concatenation of the first n primes, or 0 if no such prime exists.
2, 23, 523, 2357, 112573, 11132357, 1113257317, 111317193257, 11131719223357, 0, 111317192232935317, 11131719223293157373, 1113171922329313377541, 111317192232931337415743, 11131719223293133741474357
Offset: 1
Examples
The only prime concatenations of the first n primes for n = 1..3 are a(1)=2, a(2)=23, and a(3)=523. For n=4, the only prime concatenations of 2, 3, 5, and 7 are 2357, 2753, 3257, 3527, 5237, 5273, 7253, 7523; the smallest of these is a(4) = 2357.
References
- Richard E. Crandall and Carl Pomerance, Prime Numbers, Springer 2005.
- Paulo Ribenboim, The New Book of Prime Number Records, Springer 1996.
- A. Weil, Number theory: an approach through history, Birkhäuser 1984.
Programs
-
Python
from sympy import sieve, isprime from itertools import permutations for n in range(1, 20): sieve.extend_to_no(n) p = list(map(str, list(sieve._list)))[:n] mint = 10**1000 for i in permutations(p, len(p)): t = int(''.join(i)) if t < mint and isprime(t): mint = t if mint == 10**1000: print(0, end = ', ') else: print(mint, end = ', ') # Gleb Ivanov, Dec 04 2021
Extensions
Keyword:full added by R. J. Mathar, Nov 11 2009
Edited by Charles R Greathouse IV, Apr 28 2010
Several terms corrected and a(11)-a(15) from Gleb Ivanov, Dec 04 2021
Comments