cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167469 a(n) = 3*n*(5*n-1)/2.

This page as a plain text file.
%I A167469 #27 Sep 08 2022 08:45:48
%S A167469 6,27,63,114,180,261,357,468,594,735,891,1062,1248,1449,1665,1896,
%T A167469 2142,2403,2679,2970,3276,3597,3933,4284,4650,5031,5427,5838,6264,
%U A167469 6705,7161,7632,8118,8619,9135,9666,10212,10773,11349,11940,12546,13167,13803,14454
%N A167469 a(n) = 3*n*(5*n-1)/2.
%C A167469 This represents the nontrivial imaginary part of the decomposition of the trivariate rational polynomial described in A167467.
%C A167469 Old name was: 3*A005476(n).
%C A167469 Sum of the numbers from n to 4*n-1 for n>=1. - _Wesley Ivan Hurt_, May 08 2016
%H A167469 G. C. Greubel, <a href="/A167469/b167469.txt">Table of n, a(n) for n = 1..1000</a>
%H A167469 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F A167469 G.f.: 3*x*(2+3*x)/(1-x)^3.
%F A167469 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
%F A167469 a(n) = Sum_{i=n..4*n-1} i. - _Wesley Ivan Hurt_, May 08 2016
%F A167469 E.g.f.: 3*x*(4 + 5*x)*exp(x)/2. - _Ilya Gutkovskiy_, May 14 2016
%F A167469 a(n) = Sum_{i = 2..7} P(i,n), where P(i,m) = m*((i-2)*m-(i-4))/2. - _Bruno Berselli_, Jul 04 2018
%p A167469 A167469:=n->3*n*(5*n-1)/2: seq(A167469(n), n=1..50); # _Wesley Ivan Hurt_, May 08 2016
%t A167469 Table[3n(5n-1)/2, {n, 50}] (* _Vladimir Joseph Stephan Orlovsky_, Jul 06 2011 *)
%o A167469 (Magma) [3*n*(5*n-1)/2 : n in [1..50]]; // _Wesley Ivan Hurt_, May 08 2016
%o A167469 (PARI) x='x+O('x^50); Vec(3*x*(2+3*x)/(1-x)^3) \\ _Altug Alkan_, May 14 2016
%o A167469 (Sage) [3*n*(5*n-1)/2 for n in (1..50)] # _G. C. Greubel_, Sep 01 2019
%o A167469 (GAP) List([1..50], n-> 3*n*(5*n-1)/2); # _G. C. Greubel_, Sep 01 2019
%Y A167469 Cf. A005476, A167467.
%Y A167469 Similar sequences are listed in A316466.
%K A167469 nonn,easy
%O A167469 1,1
%A A167469 _A.K. Devaraj_, Nov 05 2009
%E A167469 a(1) corrected, definition simplified, sequence extended by _R. J. Mathar_, Nov 12 2009
%E A167469 Name changed by _Wesley Ivan Hurt_, May 08 2016