cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167473 Primes p such that (p reversed)+10 is also a prime.

This page as a plain text file.
%I A167473 #19 Sep 08 2022 08:45:48
%S A167473 3,7,13,19,31,37,73,79,97,103,109,139,157,181,193,337,349,367,373,379,
%T A167473 733,739,751,769,787,907,919,997,1009,1039,1051,1093,1117,1123,1129,
%U A167473 1171,1201,1237,1249,1291,1303,1399,1423,1447,1459,1483,1489,1531,1543,1549,1663,1741,1747,1753,1783
%N A167473 Primes p such that (p reversed)+10 is also a prime.
%H A167473 Vincenzo Librandi, <a href="/A167473/b167473.txt">Table of n, a(n) for n = 1..1000</a>
%e A167473 13 is in the sequence because 31+10 = 41, which is prime.
%e A167473 37 is in the sequence because 73+10 = 83, which is prime.
%t A167473 Select[Prime[Range[2, 3000]], PrimeQ[FromDigits[Reverse[IntegerDigits[#]]] + 10]&] (* _Vincenzo Librandi_, Sep 15 2013 *)
%t A167473 Select[Prime[Range[300]],PrimeQ[IntegerReverse[#]+10]&] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, May 26 2020 *)
%o A167473 (Magma) [p: p in PrimesUpTo(1783) | IsPrime(q+10) where q is Seqint(Reverse(Intseq(p)))]; // _Vincenzo Librandi_, Sep 15 2013
%K A167473 nonn,base
%O A167473 1,1
%A A167473 _Vincenzo Librandi_, Nov 04 2009
%E A167473 Inserted 193, 367 etc. - _R. J. Mathar_, Nov 08 2009
%E A167473 Inserted 3 and 7 - _R. J. Mathar_, Jan 05 2011