cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167479 Convolution of the Catalan numbers A000108(n) and (-2)^n.

This page as a plain text file.
%I A167479 #22 Apr 12 2023 11:08:48
%S A167479 1,-1,4,-3,20,2,128,173,1084,2694,11408,35970,136072,470756,1732928,
%T A167479 6228989,22899692,83845406,309947888,1147367414,4269385592,
%U A167479 15927495836,59627571968,223804469714,842295207896,3177355985660,12012641100832
%N A167479 Convolution of the Catalan numbers A000108(n) and (-2)^n.
%C A167479 Hankel transform is A079935.
%H A167479 G. C. Greubel, <a href="/A167479/b167479.txt">Table of n, a(n) for n = 0..500</a>
%H A167479 S. B. Ekhad and M. Yang, <a href="http://sites.math.rutgers.edu/~zeilberg/tokhniot/oMathar1maple12.txt">Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences</a>, (2017)
%F A167479 G.f.: c(x)/(1+2x), c(x) the g.f. of A000108.
%F A167479 a(n) = Sum_{k=0..n} (-2)^(n-k)*A000108(k).
%F A167479 (n+1)*a(n) + 2*(2-n)*a(n-1) + 4*(1-2*n)*a(n-2)=0. - _R. J. Mathar_, Nov 16 2011 [Proof in Ekhad/Yang, Theorem 26]
%F A167479 a(n) ~ 2^(2*n + 1) / (3 * sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Mar 08 2018
%t A167479 CoefficientList[Series[(1 - Sqrt[1 - 4*t])/(2*t*(1 + 2*t)), {t, 0, 50}], t] (* _G. C. Greubel_, Jun 13 2016 *)
%Y A167479 Cf. A000108, A079935.
%K A167479 easy,sign
%O A167479 0,3
%A A167479 _Paul Barry_, Nov 04 2009