cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167494 List of first differences of A167493 that are different from 1.

This page as a plain text file.
%I A167494 #25 Dec 13 2018 19:06:04
%S A167494 2,3,3,5,3,13,5,3,31,61,7,5,3,7,139,5,3,283,5,3,571,7,5,3,1153,5,3,
%T A167494 2311,31,4651,17,5,13,3,3,5,3,9343,5,3,11,3,59,3,29,3,19,7,5,3,7,19,5,
%U A167494 3,17,3,113
%N A167494 List of first differences of A167493 that are different from 1.
%C A167494 Conjecture. All terms of the sequence are primes.
%C A167494 The conjecture is false: a(144)=27, a(146)=25, a(158)=45, etc., which are composite numbers. - _Harvey P. Dale_, Dec 05 2015
%H A167494 Michel Marcus, <a href="/A167494/b167494.txt">Table of n, a(n) for n = 1..211</a>
%H A167494 E. S. Rowland, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL11/Rowland/rowland21.html">A natural prime-generating recurrence</a>, Journal of Integer Sequences, Vol. 11 (2008), Article 08.2.8.
%H A167494 V. Shevelev, <a href="http://arxiv.org/abs/0910.4676">A new generator of primes based on the Rowland idea</a>, arXiv:0910.4676 [math.NT], 2009.
%H A167494 V. Shevelev, <a href="http://arxiv.org/abs/0911.5478">Three theorems on twin primes</a>, arXiv:0911.5478 [math.NT], 2009-2010. [From _Vladimir Shevelev_, Dec 03 2009]
%t A167494 nxt[{n_,a_}]:={n+1,If[EvenQ[n],a+GCD[n+1,a],a+GCD[n-1,a]]}; DeleteCases[ Differences[ Transpose[NestList[nxt,{1,2},20000]][[2]]],1] (* _Harvey P. Dale_, Dec 05 2015 *)
%o A167494 (PARI) lista(nn) = {my(va = vector(nn)); va[1] = 2; for (n=2, nn, va[n] = if (n%2, va[n-1] + gcd(n, va[n-1]), va[n-1] + gcd(n-2, va[n-1]));); select(x->(x!=1), vector(nn-1, n, va[n+1] - va[n]));} \\ _Michel Marcus_, Dec 13 2018
%Y A167494 Cf. A167493, A167197, A167195, A167170, A167168, A106108, A132199, A167054, A167053, A166944, A166945, A116533, A163961, A163963, A084662, A084663, A134162, A135506, A135508, A118679, A120293.
%K A167494 nonn
%O A167494 1,1
%A A167494 _Vladimir Shevelev_, Nov 05 2009