cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A167529 a(n) is the number of nonisolated nonprimes k such that (n-th nonisolated prime) < k < (n-th isolated prime).

Original entry on oeis.org

0, 9, 19, 22, 27, 34, 42, 37, 42, 41, 50, 50, 53, 64, 69, 49, 54, 79, 90, 72, 86, 82, 87, 74, 86, 90, 96, 106, 111, 98, 103, 102, 107, 88, 91, 88, 95, 73, 80, 73, 76, 22, 29, 26, 37, 21, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 06 2009

Keywords

Examples

			a(1)=0 (3 > [none] > 2);
a(2)=9 (5 < 8,9,10,14,15,16,20,21,22 < 23);
a(3)=19 (7 < 8,9,10,14,15,16,20,21,22,24,25,26,27,28,32,33,34,35,36 < 37).
		

Crossrefs

Cf. A001097 (the nonisolated primes), A007510 (the isolated primes), A164276 (the nonisolated nonprimes), A167511.

Programs

  • Maple
    isA001097 := proc(n) isprime(n) and ( isprime(n+2) or isprime(n-2) ); end proc:
    A001097 := proc(n) option remember; if n =1 then 3; else for a from procname(n-1)+2 by 2 do if isA001097(a) then return a; end if; end do: end if; end proc:
    A007510 := proc(n) option remember; if n <= 2 then op(n,[2,23]) ; else for a from procname(n-1)+2 by 2 do if isprime(a) and not isprime(a+2) and not isprime(a-2) then return a; end if; end do: end if; end proc:
    A167529 := proc(n) a := 0 ; for k from A001097(n)+1 to A007510(n)-1 do if isA164276(k) then a := a+1 ; end if; end do: a ; end proc:
    seq(A167529(n),n=1..120) ; # R. J. Mathar, May 30 2010

Extensions

Corrected (23 replaced with 22, 28 with 27) and extended by R. J. Mathar, May 30 2010

A167595 The number of nonisolated primes between the n-th nonisolated nonprime and the n-th isolated nonprime.

Original entry on oeis.org

1, 2, 1, 3, 5, 5, 7, 9, 9, 11, 13, 15, 17, 19, 21, 23, 23, 25, 27, 29, 31, 33, 35, 37, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 61, 63, 65, 67, 69, 71, 73, 75, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 119
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 06 2009

Keywords

Examples

			a(1)=1  (0 < 3 < 4);
a(2)=2  (1 < 3,5 < 6);
a(3)=1  (8 < 11 <12);
a(4)=3  (9 < 11,13,17 < 18);
a(5)=5 (10 < 11,13,17,19,29 < 30);
a(6)=5 (14 < 17,19,29,31,41 < 42);
a(7)=7 (15 < 17,19,29,31,41,43,59 < 60);
a(8)=9 (16 < 17,19,29,31,41,43,59,61,71 < 72).
		

Crossrefs

Cf. A001097 (the nonisolated primes), A014574 (the isolated nonprimes), A164276 (the nonisolated nonprimes), A167511.

Programs

  • Maple
    A164276 := proc(n) option remember; if n = 1 then 0; else for a from procname(n-1)+1 do if isA164276(a) then return a; end if; end do; end if: end proc:
    A001097 := proc(n) option remember; if n =1 then 3; else for a from procname(n-1)+2 by 2 do if isA001097(a) then return a; end if; end do: end if; end proc:
    A167595 := proc(n) a := 0 ; for k from A164276(n)+1 to A014574(n)-1 do if isA001097(k) then a := a+1 ; end if; end do: a ; end proc:
    seq(A167595(n),n=1..120) ; # R. J. Mathar, May 30 2010

Extensions

More terms from R. J. Mathar, May 30 2010

A167596 The number of isolated nonprimes between the nonisolated prime and the isolated prime.

Original entry on oeis.org

0, 3, 3, 4, 3, 4, 4, 4, 3, 3, 4, 4, 3, 5, 4, 4, 3, 6, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6, 5, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 3, 2, 2, 1, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 06 2009

Keywords

Examples

			a(1)=0 (3>no>2); a(2)=3 (5<6&12&18<23); a(3)=3 (7<12718&30<37); a(4)=4 (11<12&18&30&42<47); a(5)=3 (13<18&30&42<53); a(6)=4 (17<18&30&42&60<67).
		

Crossrefs

Cf. A001097 (the nonisolated primes), A007510 (the isolated primes), A014574 (the isolated nonprimes), A167511.

Extensions

All numbers from a(49) onwards corrected and sequence extended beyond a(59) by R. J. Mathar, May 30 2010
Showing 1-3 of 3 results.