This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167534 #25 Mar 19 2024 09:32:37 %S A167534 9,70,88,149,167,228,246,307,325,386,404,465,483,544,562,623,641,702, %T A167534 720,781,799,860,878,939,957,1018,1036,1097,1115,1176,1194,1255,1273, %U A167534 1334,1352,1413,1431,1492,1510,1571,1589,1650,1668,1729,1747,1808,1826 %N A167534 a(n) = 79*n - a(n-1) for n>0, a(0)=9. %C A167534 Numbers k such that k^2 == 2 (mod 79). - _Vincenzo Librandi_, Jun 25 2014 %H A167534 Vincenzo Librandi, <a href="/A167534/b167534.txt">Table of n, a(n) for n = 0..1000</a> %H A167534 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1). %F A167534 G.f.: (9 + 61*x + 9*x^2)/((1 + x)*(1 - x)^2). - _Vincenzo Librandi_, Jun 06 2014 %F A167534 Sum_{n>=0} (-1)^n/a(n) = cot(9*Pi/79)*Pi/79. - _Amiram Eldar_, Feb 24 2023 %t A167534 CoefficientList[Series[(9 + 61 x + 9 x^2)/((1 + x) (1 - x)^2), {x, 0, 50}], x] (* _Vincenzo Librandi_, Jun 06 2014 *) %o A167534 (Magma) [(79/4)-(43/4)*(-1)^n+(79/2)*n: n in [0..50]]; // _Vincenzo Librandi_, Jun 06 2014 %K A167534 nonn,easy %O A167534 0,1 %A A167534 _Vincenzo Librandi_, Nov 06 2009 %E A167534 Edited by _N. J. A. Sloane_, Jun 23 2010