cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167535 Primes which are the concatenation of two squares (in decimal notation).

This page as a plain text file.
%I A167535 #23 Jun 18 2021 01:14:23
%S A167535 11,19,41,149,181,251,449,491,499,641,811,1009,1289,1361,1699,2251,
%T A167535 2549,4001,4289,4441,4729,6449,6481,6761,7841,8419,9001,9619,10891,
%U A167535 11369,11681,12149,12251,12401,12601,12809,13249,13691,13721,14449,14489
%N A167535 Primes which are the concatenation of two squares (in decimal notation).
%C A167535 Necessarily a(n) has to end with 1 or 9.
%C A167535 It is not known if the sequence is infinite.
%C A167535 The Bunyakovsky conjecture implies that for every b coprime to 10, there are infinitely many terms where the second square is b^2. - _Robert Israel_, Jun 17 2021
%C A167535 Intersection of A191933 and A000040; A193095(a(n)) > 0 and A010051(a(n))=1. - _Reinhard Zumkeller_, Jul 17 2011
%D A167535 Richard E. Crandall, Carl Pomerance, Prime Numbers, Springer 2005.
%D A167535 Wladyslaw Narkiewicz, The Development of Prime Number Theory from Euclid to Hardy and Littlewood, Springer 2000.
%D A167535 Paulo Ribenboim, The New Book of Prime Number Records, Springer 1996.
%H A167535 Reinhard Zumkeller, <a href="/A167535/b167535.txt">Table of n, a(n) for n = 1..500</a>
%F A167535 a(n) = m^2 * 10^k + n^2 for a k-digit square number n^2.
%e A167535 11 = 1^2 * 10 + 1^2, 149 = 1^2 * 10^2 + 7^2, 1361 = 1^2 * 10^3 + 19^2.
%e A167535 14401 = 12^2 * 10^2 + 1^2 is not a term because included "0" (1^2=1 is 1-digit).
%e A167535 14449 = 12^2 * 10^2 + 7^2 = 38^2 * 10 + 3^2 is the smallest prime with 2 such representations.
%p A167535 zcat:= proc(a,b) 10^(1+ilog10(b))*a+b end proc;
%p A167535 S:= select(t -> t <= 10^7 and isprime(t), {seq(seq(zcat(a^2,b^2),a=1..10^3),b=1..10^3,2)}):
%p A167535 sort(convert(S,list)); # _Robert Israel_, Jun 17 2021
%o A167535 (Haskell)
%o A167535 a167535 n = a167535_list !! (n-1)
%o A167535 a167535_list = filter ((> 0) . a193095) a000040_list
%o A167535 -- _Reinhard Zumkeller_, Jul 17 2011
%o A167535 (PARI) is_A167535(n)={ my(t=1); isprime(n) && while(n>t*=10, apply(issquare,divrem(n,t))==[1,1]~ && n%t*10>=t && return(1))}
%o A167535 forprime(p=1,default(primelimit), is_A167535(p) && print1(p",")) \\ _M. F. Hasler_, Jul 24 2011
%o A167535 (Python)
%o A167535 from sympy import isprime
%o A167535 def aupto(lim):
%o A167535     s = list(i**2 for i in range(1, int(lim**(1/2))+2))
%o A167535     t = set(int(str(a)+str(b)) for a in s for b in s)
%o A167535     return sorted(filter(isprime, filter(lambda x: x<=lim, t)))
%o A167535 print(aupto(15000)) # _Michael S. Branicky_, Jun 17 2021
%Y A167535 Cf. A167416, A167417.
%Y A167535 Supersequence of A345314.
%K A167535 nonn,base
%O A167535 1,1
%A A167535 Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 06 2009
%E A167535 11369 inserted by _R. J. Mathar_, Nov 07 2009