This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167535 #23 Jun 18 2021 01:14:23 %S A167535 11,19,41,149,181,251,449,491,499,641,811,1009,1289,1361,1699,2251, %T A167535 2549,4001,4289,4441,4729,6449,6481,6761,7841,8419,9001,9619,10891, %U A167535 11369,11681,12149,12251,12401,12601,12809,13249,13691,13721,14449,14489 %N A167535 Primes which are the concatenation of two squares (in decimal notation). %C A167535 Necessarily a(n) has to end with 1 or 9. %C A167535 It is not known if the sequence is infinite. %C A167535 The Bunyakovsky conjecture implies that for every b coprime to 10, there are infinitely many terms where the second square is b^2. - _Robert Israel_, Jun 17 2021 %C A167535 Intersection of A191933 and A000040; A193095(a(n)) > 0 and A010051(a(n))=1. - _Reinhard Zumkeller_, Jul 17 2011 %D A167535 Richard E. Crandall, Carl Pomerance, Prime Numbers, Springer 2005. %D A167535 Wladyslaw Narkiewicz, The Development of Prime Number Theory from Euclid to Hardy and Littlewood, Springer 2000. %D A167535 Paulo Ribenboim, The New Book of Prime Number Records, Springer 1996. %H A167535 Reinhard Zumkeller, <a href="/A167535/b167535.txt">Table of n, a(n) for n = 1..500</a> %F A167535 a(n) = m^2 * 10^k + n^2 for a k-digit square number n^2. %e A167535 11 = 1^2 * 10 + 1^2, 149 = 1^2 * 10^2 + 7^2, 1361 = 1^2 * 10^3 + 19^2. %e A167535 14401 = 12^2 * 10^2 + 1^2 is not a term because included "0" (1^2=1 is 1-digit). %e A167535 14449 = 12^2 * 10^2 + 7^2 = 38^2 * 10 + 3^2 is the smallest prime with 2 such representations. %p A167535 zcat:= proc(a,b) 10^(1+ilog10(b))*a+b end proc; %p A167535 S:= select(t -> t <= 10^7 and isprime(t), {seq(seq(zcat(a^2,b^2),a=1..10^3),b=1..10^3,2)}): %p A167535 sort(convert(S,list)); # _Robert Israel_, Jun 17 2021 %o A167535 (Haskell) %o A167535 a167535 n = a167535_list !! (n-1) %o A167535 a167535_list = filter ((> 0) . a193095) a000040_list %o A167535 -- _Reinhard Zumkeller_, Jul 17 2011 %o A167535 (PARI) is_A167535(n)={ my(t=1); isprime(n) && while(n>t*=10, apply(issquare,divrem(n,t))==[1,1]~ && n%t*10>=t && return(1))} %o A167535 forprime(p=1,default(primelimit), is_A167535(p) && print1(p",")) \\ _M. F. Hasler_, Jul 24 2011 %o A167535 (Python) %o A167535 from sympy import isprime %o A167535 def aupto(lim): %o A167535 s = list(i**2 for i in range(1, int(lim**(1/2))+2)) %o A167535 t = set(int(str(a)+str(b)) for a in s for b in s) %o A167535 return sorted(filter(isprime, filter(lambda x: x<=lim, t))) %o A167535 print(aupto(15000)) # _Michael S. Branicky_, Jun 17 2021 %Y A167535 Cf. A167416, A167417. %Y A167535 Supersequence of A345314. %K A167535 nonn,base %O A167535 1,1 %A A167535 Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 06 2009 %E A167535 11369 inserted by _R. J. Mathar_, Nov 07 2009