This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167568 #6 Jun 16 2016 23:27:41 %S A167568 1,0,2,2,-2,6,0,16,-16,24,24,-48,144,-120,120,0,432,-864,1392,-960, %T A167568 720,720,-2160,8208,-12816,14448,-8400,5040,0,23040,-69120,149760, %U A167568 -184320,161280,-80640,40320,40320,-161280,760320,-1716480,2684160,-2695680 %N A167568 A triangle related to the GF(z) formulas of the rows of the ED2 array A167560. %C A167568 The GF(z) formulas given below correspond to the first ten rows of the ED2 array A167560. The polynomials in their numerators lead to the triangle given above. %e A167568 Row 1: GF(z) = 1/(1-z). %e A167568 Row 2: GF(z) = 2/(1-z)^2. %e A167568 Row 3: GF(z) = (2*z^2 - 2*z + 6)/(1-z)^3. %e A167568 Row 4: GF(z) = (0*z^3 + 16*z^2 - 16*z + 24)/(1-z)^4. %e A167568 Row 5: GF(z) = (24*z^4 - 48*z^3 + 144*z^2 - 120*z + 120)/(1-z)^5. %e A167568 Row 6: GF(z) = (432*z^4 - 864*z^3 + 1392*z^2 - 960*z + 720)/(1-z)^6. %e A167568 Row 7: GF(z) = (720*z^6 - 2160*z^5 + 8208*z^4 - 12816*z^3 + 14448*z^2 - 8400*z + 5040)/(1-z)^7. %e A167568 Row 8: GF(z) = (0*z^7 + 23040*z^6 - 69120*z^5 + 149760*z^4 - 184320*z^3 + 161280*z^2 - 80640*z + 40320)/(1-z)^8. %e A167568 Row 9: GF(z) = (40320*z^8 - 161280*z^7 + 760320*z^6 - 1716480*z^5 + 2684160*z^4 - 2695680*z^3 + 1935360*z^2 - 846720*z + 362880)/(1-z)^9. %e A167568 Row 10: GF(z) = (0*z^9 + 2016000*z^8 - 8064000*z^7 + 22464000*z^6 - 39168000*z^5 + 48360960*z^4 - 40849920*z^3 + 24917760*z^2 - 9676800*z + 3628800)/(1-z)^10. %Y A167568 A167560 is the ED2 array. %Y A167568 A005359 equals the first left hand column. %Y A167568 A000142(n=>1) and 2*A005990 equal the first two right hand columns. %Y A167568 A000142(n=>1) equals the row sums. %K A167568 sign,tabl %O A167568 1,3 %A A167568 _Johannes W. Meijer_, Nov 10 2009