cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167602 Expansion of 1/(1+14*x+72*x^2+384*x^3+512*x^4).

This page as a plain text file.
%I A167602 #14 Jun 18 2016 00:43:44
%S A167602 1,-14,124,-1112,11504,-121440,1235392,-12400000,125394688,
%T A167602 -1274938880,12949806080,-131304445952,1331250655232,-13503545892864,
%U A167602 136990201856000,-1389579896979456,14094585311461376
%N A167602 Expansion of 1/(1+14*x+72*x^2+384*x^3+512*x^4).
%C A167602 The limit of a(n+1)/a(n) tends to 8*(-1.2679237217317025...).
%H A167602 G. C. Greubel, <a href="/A167602/b167602.txt">Table of n, a(n) for n = 0..1000</a>
%H A167602 <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (-14,-72,-384,-512).
%F A167602 a(n+4) + 14*a(n+3) + 72*a(n+2) + 384*a(n+1) + 512*a(n) = 0. - _G. C. Greubel_, Jun 17 2016
%t A167602 Clear[p, q, x, t, n];
%t A167602 p[z_]:= 1 + 6 *z + 9 *z^2 + 14* z^3 + 8 *z^4;
%t A167602 q[x_]:= 1/Expand[x^4*p[1/x]];
%t A167602 a = Table[8^(n + 1)*SeriesCoefficient[ Series[q[t], {t, 0, 60}], n], {n, 0, 60}]
%t A167602 LinearRecurrence[{-14, -72, -384, -512}, {1, -14, 124, -1112}, 100] (* _G. C. Greubel_, Jun 17 2016 *)
%o A167602 (PARI) Vec(1/(1+14*x+72*x^2+384*x^3+512*x^4)+O(x^99)) \\ _Charles R Greathouse IV_, Sep 26 2012
%K A167602 sign,easy
%O A167602 0,2
%A A167602 _Roger L. Bagula_, Nov 06 2009
%E A167602 Definition rephrased. - _R. J. Mathar_, Jul 02 2012