cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167615 Total number of positive integers below 10^n with 4 positive squares in their representation as sum of squares.

This page as a plain text file.
%I A167615 #25 Feb 16 2025 08:33:11
%S A167615 1,15,165,1665,16664,166664,1666663,16666663,166666661,1666666662,
%T A167615 16666666661,166666666660,1666666666661,16666666666660,
%U A167615 166666666666659,1666666666666660,16666666666666658,166666666666666657,1666666666666666660,16666666666666666656
%N A167615 Total number of positive integers below 10^n with 4 positive squares in their representation as sum of squares.
%C A167615 A049416(n) + A180416(n) + A180425(n) + a(n) = A002283(n).
%H A167615 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LagrangesFour-SquareTheorem.html">Lagrange's Four-Square Theorem</a>.
%H A167615 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SumofSquaresFunction.html">Sum of Squares Function</a>.
%F A167615 a(n) = Sum_{i=0..k} ceiling(10^n/2^(2*i+3) - 7/8) with minimal k for which ceiling(10^n/2^(2*k+3) - 7/8) = 0.
%e A167615 a(1) = 1 since 7 is the only natural number below 10 which is the sum of 4 but no fewer nonzero squares.
%p A167615 a:=proc(n)
%p A167615   local f,s,k;
%p A167615   f:=(x,y)->ceil(10^y/2^(2*x+3)-7/8):
%p A167615   s:=0:
%p A167615   for k from 0 by 1 while not f(k,n)=0 do
%p A167615     s:=s+f(k,n);
%p A167615   od:
%p A167615   return(s);
%p A167615 end;
%t A167615 a[n_] := Module[{f, s = 0, k}, f[x_, y_] := Ceiling[10^y/2^(2x+3) - 7/8]; For[k = 0, f[k, n] != 0, k++, s += f[k, n]]; Return[s]];
%t A167615 Array[a, 20] (* _Jean-François Alcover_, Oct 31 2020, after Maple *)
%Y A167615 Cf. A004215.
%K A167615 nonn
%O A167615 1,2
%A A167615 _Martin Renner_, Jan 18 2011