This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167620 #36 Aug 03 2025 06:06:46 %S A167620 1,2,3,4,5,6,7,8,9,11,12,15,111,112,115,315,612,1111,1112,1113,1115, %T A167620 1116,11111,11112,11115,12312,13212,21312,23112,31212,32112,111111, %U A167620 111112,111115,111315,111612,113115,116112,131115,161112,311115,511175 %N A167620 Numbers that are multiples of their digital product, where this digital product also appears as their least significant digits. %C A167620 Subsequence of A007602. - _R. J. Mathar_, Nov 12 2009 %C A167620 The digital products of the terms are a subsequence of A238985. - _Karl-Heinz Hofmann_, Feb 16 2024 %H A167620 Karl-Heinz Hofmann, <a href="/A167620/b167620.txt">Table of n, a(n) for n = 1..8042</a> (Terms < 10^18, first 690 terms from David A. Corneth) %e A167620 612 is in the list because 6*1*2=12, 612 is a multiple of 12, and 12 is the final two digits of 612. %o A167620 (PARI) is(n) = { my(vp = vecprod(digits(n))); vp != 0 && n %vp == 0 && n % 10^(#digits(vp)) == vp } \\ _David A. Corneth_, Mar 30 2021 %o A167620 (Python) %o A167620 A167620 = [] %o A167620 for k in range(1,511176): %o A167620 dprod, k_str = 1, str(k) %o A167620 for d in range(0,len(k_str)): dprod *= int(k_str[d]) %o A167620 if dprod != 0 and k % dprod == 0 and str(dprod) == k_str[-(len(str(dprod))):]: %o A167620 A167620.append(k) %o A167620 print(A167620) # _Karl-Heinz Hofmann_, Jan 26 2024 %Y A167620 Cf. A007602, A238985, A194356. %K A167620 nonn,base %O A167620 1,2 %A A167620 _Claudio Meller_, Nov 07 2009