This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167630 #23 May 02 2025 16:23:13 %S A167630 1,1,1,1,2,1,1,4,3,1,1,8,8,4,1,1,17,20,13,5,1,1,38,50,38,19,6,1,1,89, %T A167630 126,107,63,26,7,1,1,216,322,296,196,96,34,8,1,1,539,834,814,588,326, %U A167630 138,43,9,1,1,1374,2187,2236,1728,1052,507,190,53,10,1 %N A167630 Riordan array (1/(1-x),xm(x)) where m(x) is the g.f. of Motzkin numbers A001006. %H A167630 Alois P. Heinz, <a href="/A167630/b167630.txt">Rows n = 0..200, flattened</a> %F A167630 T(n,0)=1, T(0,k)=0 for k>0, T(n,k)=0 if k>n, T(n,k)=T(n-1,k-1)+T(n-1,k)+T(n-1,k+1). %F A167630 Sum_{k=0..n} k * T(n,k) = A003462(n). - _Alois P. Heinz_, Apr 20 2018 %F A167630 Sum_{k=0..n} (-1)^(k+1) * T(n,k) = A082397(n-2) for n>=2. - _Alois P. Heinz_, May 02 2025 %e A167630 Triangle begins: %e A167630 1; %e A167630 1, 1; %e A167630 1, 2, 1; %e A167630 1, 4, 3, 1; %e A167630 1, 8, 8, 4, 1; %e A167630 1, 17, 20, 13, 5, 1; %e A167630 1, 38, 50, 38, 19, 6, 1; %e A167630 ... %p A167630 T:= proc(n, k) option remember; `if`(k=0, 1, %p A167630 `if`(k>n, 0, T(n-1, k-1)+T(n-1, k)+T(n-1, k+1))) %p A167630 end: %p A167630 seq(seq(T(n, k), k=0..n), n=0..12); # _Alois P. Heinz_, Apr 20 2018 %t A167630 T[_, 0] = T[n_, n_] = 1; %t A167630 T[n_, k_] /; 0<k<n := T[n, k] = T[n-1, k-1] + T[n-1, k] + T[n-1, k+1]; %t A167630 T[_, _] = 0; %t A167630 Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Dec 09 2019 *) %Y A167630 Antidiagonal sums give A082395. %Y A167630 Row sums give A383527. %Y A167630 Diagonals include: A006416, A034856, A086615, A140662. %Y A167630 Cf. A001006, A003462, A064189, A082397, A094531. %K A167630 nonn,tabl %O A167630 0,5 %A A167630 _Philippe Deléham_, Nov 07 2009