A167631 Emirps A006567 with a sum of digits and a number of digits which are both primes.
113, 157, 179, 199, 311, 337, 359, 733, 739, 751, 937, 953, 971, 991, 10039, 10079, 10091, 10253, 10273, 10321, 10343, 10453, 10457, 10459, 10499, 10613, 10639, 10651, 10781, 10853, 10859, 10891, 10909, 11003, 11083, 11159, 11197, 11243
Offset: 1
Examples
113 and 311 are distinct primes, and 3 (number of digits) and 5 (1+1+3) are also primes.
Links
- Karl-Heinz Hofmann, Table of n, a(n) for n = 1..10000
Programs
-
PARI
sod(n)=my(s=0);while(n>9,s+=n%10;n\=10);s+n R(n)=my(v=eval(Vec(Str(n))),s=0);forstep(i=#v,1,-1,s=10*s+v[i]);s isA167631(n)=my(r); isprime(#Str(n)) && isprime(sod(n)) && isprime(n) && isprime(r=R(n)) && n!=r \\ Charles R Greathouse IV, Nov 10 2009
-
Python
from sympy import primerange, isprime A167631 =[] for power_of_ten in [2,3,5]: # (7 can be added (12 sec. and 26790 terms), 11 not recommended) primes = list(primerange(10**(power_of_ten-1),10**power_of_ten)) for p in primes: if str(p) != (p_rev:=str(p)[::-1]): if isprime(int(p_rev)): if isprime(sum(list(map(int, p_rev.strip())))): A167631.append(p) print(A167631) # Karl-Heinz Hofmann, Feb 19 2025
Extensions
Edited by Charles R Greathouse IV and R. J. Mathar, Nov 10 2009
Comments