cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167635 Number of Dyck paths of semilength n, having no ascents and no descents of length 1, and having no peaks at odd level.

This page as a plain text file.
%I A167635 #4 Jul 26 2022 10:39:01
%S A167635 1,0,1,0,2,0,5,1,14,7,43,36,143,166,509,731,1915,3158,7523,13560,
%T A167635 30537,58257,127029,251266,538253,1089666,2313121,4754148,10051130,
%U A167635 20868070,44065633,92132176,194617333,408971295,864899013,1824485600,3864369141
%N A167635 Number of Dyck paths of semilength n, having no ascents and no descents of length 1, and having no peaks at odd level.
%C A167635 a(n)=A167634(n,0).
%F A167635 G.f.: G = [1 + 2z - z^3 - sqrt(1 - 4z^2 - 2z^3 + z^6)]/[2z(1 + z - z^2)].
%F A167635 D-finite with recurrence (n+1)*a(n) +a(n-1) +(-4*n+5)*a(n-2) +(-2*n+7)*a(n-3) +3*a(n-4) +a(n-5) +(n-6)*a(n-6)=0. - _R. J. Mathar_, Jul 26 2022
%e A167635 a(6)=5 because we have UUDDUUDDUUDD, UUDDUUUUDDDD, UUUUDDDDUUDD, UUUUDDUUDDDD, and UUUUUUDDDDDD.
%p A167635 G := ((1+2*z-z^3-sqrt(1-4*z^2-2*z^3+z^6))*1/2)/(z*(1+z-z^2)): Gser := series(G, z = 0, 40): seq(coeff(Gser, z, n), n = 0 .. 38);
%Y A167635 Cf. A167634, A167638
%K A167635 nonn
%O A167635 0,5
%A A167635 _Emeric Deutsch_, Nov 08 2009