cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167638 Number of Dyck paths of semilength n, having no ascents and no descents of length 1, and having no peaks at even level.

This page as a plain text file.
%I A167638 #24 Feb 06 2025 22:02:10
%S A167638 1,0,0,1,0,2,1,5,5,15,21,51,85,188,344,730,1407,2935,5831,12094,24480,
%T A167638 50754,103995,216043,446447,930206,1934328,4043275,8448882,17716170,
%U A167638 37166403,78163336,164520540,346935912,732317063,1548096255,3275859473
%N A167638 Number of Dyck paths of semilength n, having no ascents and no descents of length 1, and having no peaks at even level.
%C A167638 a(n) = A167637(n,0).
%F A167638 G.f.: (1 + 2*z - z^3 - sqrt(1 - 4*z^2 - 2*z^3 + z^6))/(2*z*(1 + z)).
%F A167638 a(n) = Sum_{i=0..n} Sum_{k=1..n-i} Sum_{j=0..i-k+1} (-1)^(n-j-1)*C(j,-k-j+i+1)*C(k+j-1,k-1)*C(2*k+j-2,k+j-1)*C(n-i-1,n-k-i)/k. - _Vladimir Kruchinin_, May 06 2018
%F A167638 D-finite with recurrence (n+1)*a(n) +a(n-1) +(-4*n+7)*a(n-2) +2*(-n+2)*a(n-3) +a(n-4) -a(n-5) +(n-7)*a(n-6)=0. - _R. J. Mathar_, Jul 24 2022
%F A167638 Conjecture: g.f. A(x) = 1 + (x^3)*exp(Sum_{n >= 1} g(n, x)*x^(2*n)/n), where g(n, x) = Sum_{k = 0..n} binomial(n, k)^2*(1 + x)^k. Cf. A129509. - _Peter Bala_, Sep 10 2024
%e A167638 a(5)=2 because we have UUUDDUUDDD and UUUUUDDDDD.
%p A167638 G := ((1+2*z-z^3-sqrt(1-4*z^2-2*z^3+z^6))*1/2)/(z*(1+z)): Gser := series(G, z = 0, 40): seq(coeff(Gser, z, n), n = 0 .. 38);
%o A167638 (Maxima)
%o A167638 a(n):=sum(sum(((sum((-1)^(n-j-1)*binomial(j,-k-j+i+1)*binomial(k+j-1,k-1)*binomial(2*k+j-2,k+j-1),j,0,-k+i+1))*binomial(n-i-1,n-k-i))/k,k,1,n-i),i,0,n);
%o A167638 /* _Vladimir Kruchinin_, May 06 2018 */
%Y A167638 Cf. A167635, A167637.
%K A167638 nonn
%O A167638 0,6
%A A167638 _Emeric Deutsch_, Nov 08 2009