cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167639 Number of peaks at even level in all Dyck paths of semilength n that have no ascents and no descents of length 1.

This page as a plain text file.
%I A167639 #20 Oct 08 2024 22:18:57
%S A167639 0,0,1,0,3,2,12,16,59,110,325,716,1926,4584,11887,29328,75071,188462,
%T A167639 480778,1217876,3107689,7913082,20221903,51664040,132259190,338721180,
%U A167639 868587021,2228677360,5723740309,14709001454,37826827606,97335031824
%N A167639 Number of peaks at even level in all Dyck paths of semilength n that have no ascents and no descents of length 1.
%C A167639 a(n) = Sum_{k>=0} k*A167637(n,k).
%H A167639 G. C. Greubel, <a href="/A167639/b167639.txt">Table of n, a(n) for n = 0..1000</a>
%F A167639 G.f.: z^2/((1+z-z^2)*sqrt((1+z+z^2)*(1-3*z+z^2))).
%F A167639 a(n) ~ sqrt(3/sqrt(5)-1) * (3+sqrt(5))^n / (sqrt(Pi*n) * 2^(n+5/2)). - _Vaclav Kotesovec_, Mar 20 2014
%F A167639 Equivalently, a(n) ~ phi^(2*n - 1) / (4 * 5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - _Vaclav Kotesovec_, Dec 08 2021
%F A167639 D-finite with recurrence (-n+2)*a(n) +(n-3)*a(n-1) +2*(2*n-5)*a(n-2) +(n-5)*a(n-3) +(-3*n+11)*a(n-5) +(n-4)*a(n-6)=0. - _R. J. Mathar_, Jul 26 2022
%e A167639 a(5)=2 because U(UD)DUUUDDD, UUUDDDU(UD)D, UUUDDUUDDD, and UUUUUDDDDD have 1 + 1 + 0 + 0 = 2 even-level peaks (shown between parentheses).
%p A167639 G := z^2/((1+z-z^2)*sqrt((1+z+z^2)*(1-3*z+z^2))): Gser := series(G, z = 0, 35): seq(coeff(Gser, z, n), n = 0 .. 32);
%t A167639 CoefficientList[Series[x^2/((1+x-x^2)*Sqrt[(1+x+x^2)*(1-3*x+x^2)]), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Mar 20 2014 *)
%o A167639 (PARI) x='x+O('x^50); concat([0,0], Vec(x^2/((1+x-x^2)*sqrt((1+x+x^2)*(1-3*x+x^2))))) \\ _G. C. Greubel_, Feb 12 2017
%Y A167639 Cf. A167636, A167637.
%K A167639 nonn
%O A167639 0,5
%A A167639 _Emeric Deutsch_, Nov 08 2009