cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167664 Number of reduced words of length n in Coxeter group on 11 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I.

This page as a plain text file.
%I A167664 #13 Nov 24 2016 11:02:59
%S A167664 1,11,110,1100,11000,110000,1100000,11000000,110000000,1100000000,
%T A167664 11000000000,110000000000,1100000000000,11000000000000,
%U A167664 110000000000000,1099999999999945,10999999999998900,109999999999983555
%N A167664 Number of reduced words of length n in Coxeter group on 11 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I.
%C A167664 The initial terms coincide with those of A003953, although the two sequences are eventually different.
%C A167664 Computed with MAGMA using commands similar to those used to compute A154638.
%H A167664 G. C. Greubel, <a href="/A167664/b167664.txt">Table of n, a(n) for n = 0..500</a>
%H A167664 <a href="/index/Rec#order_15">Index entries for linear recurrences with constant coefficients</a>, signature (9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, -45).
%F A167664 G.f.: (t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(45*t^15 - 9*t^14 - 9*t^13 - 9*t^12 - 9*t^11 - 9*t^10 - 9*t^9 - 9*t^8 - 9*t^7 - 9*t^6 - 9*t^5 - 9*t^4 - 9*t^3 - 9*t^2 - 9*t + 1).
%t A167664 coxG[{15,45,-9}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Nov 15 2014 *)
%t A167664 CoefficientList[Series[(t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(45*t^15 - 9*t^14 - 9*t^13 - 9*t^12 - 9*t^11 - 9*t^10 - 9*t^9 - 9*t^8 - 9*t^7 - 9*t^6 - 9*t^5 - 9*t^4 - 9*t^3 - 9*t^2 - 9*t + 1), {t, 0, 50}], t] (* _G. C. Greubel_, Jun 19 2016 *)
%K A167664 nonn
%O A167664 0,2
%A A167664 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009