This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167682 #20 Jan 21 2017 16:40:57 %S A167682 1,4,20,84,324,1188,4212,14580,49572,166212,551124,1810836,5904900, %T A167682 19131876,61647156,197696052,631351908,2008846980,6370914708, %U A167682 20145865428,63536960196,199908972324,627621192180,1966546402164,6150687683364,19205208480708 %N A167682 Expansion of (1 - 2*x + 5*x^2) / (1 - 3*x)^2. %H A167682 Harvey P. Dale, <a href="/A167682/b167682.txt">Table of n, a(n) for n = 0..1000</a> %H A167682 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,-9). %F A167682 a(0)=1, a(1)=4, a(2)=20, a(n) = 6*a(n-1) - 9*a(n-2) for n>2. %F A167682 a(n) = 4*A081038(n-1) for n>0. %F A167682 a(n) = Sum_{k=0..n} A167666(n,k)*3^k. %F A167682 a(n) = 3^(n - 2)*(8*n + 4) for n>0. - _Colin Barker_, Jan 21 2017 %t A167682 CoefficientList[Series[(1-2x+5*x^2)/(1-3x)^2,{x,0,40}],x] (* or *) Join[{1},LinearRecurrence[{6,-9},{4,20},40]] (* _Harvey P. Dale_, Oct 20 2011 *) %o A167682 (PARI) Vec((1-2*x+5*x^2) / (1-3*x)^2 + O(x^99)) \\ _Charles R Greathouse IV_, Sep 26 2012 %K A167682 nonn,easy %O A167682 0,2 %A A167682 _Philippe Deléham_, Nov 09 2009 %E A167682 Corrected and extended by _Harvey P. Dale_, Oct 20 2011 %E A167682 PARI code corrected by _Colin Barker_, Jan 21 2017