This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167690 #14 Mar 02 2025 16:03:31 %S A167690 16,54,126,210,250,390,462,686,798,1150,1254,1794,1870,2046,2662,2886, %T A167690 3162,3458,4394,4606,4930,5830,5934,8246,8602,9246,9430,9826,10974, %U A167690 13718,14110,15370,15762,16198,19434,21414,22678,24198,24334,25990 %N A167690 The even composites c such that c=q*g*j*y and q+g=j*y where q,g,j,y are primes. %H A167690 Karl-Heinz Hofmann, <a href="/A167690/b167690.txt">Table of n, a(n) for n = 1..10000</a> %e A167690 a(1) = 2 * 2 * 2 * 2 = 16 %e A167690 a(2) = 3 * 3 * 2 * 3 = 54 %e A167690 a(3) = 2 * 7 * 3 * 3 = 126 %e A167690 a(4) = 3 * 7 * 2 * 5 = 210. %o A167690 (Python) %o A167690 from sympy import isprime, nextprime, integer_nthroot %o A167690 c_upto = 100000 %o A167690 A167690, q, lim_q, lim_g = set(), 2, integer_nthroot(c_upto//2,3)[0], integer_nthroot(c_upto//3,2)[0]//2 %o A167690 while (g:=q) <= lim_q: %o A167690 while g <= lim_g: %o A167690 fac = 2 * q * g %o A167690 for j in [2 * q - g, 2 * g - q, q * g - 2 ]: %o A167690 if isprime(j) and (an:= fac * j) < c_upto : A167690.add(an) %o A167690 g = nextprime(g) %o A167690 q = nextprime(q) %o A167690 print((A167690:=sorted(A167690))) # _Karl-Heinz Hofmann_, Feb 21 2025 %Y A167690 Cf. A000040, A157931, A167629. %K A167690 nonn %O A167690 1,1 %A A167690 _Juri-Stepan Gerasimov_, Nov 09 2009 %E A167690 Corrected (250, 686, 1794 etc inserted, 9486, 15782 removed) by _R. J. Mathar_, May 30 2010