cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167707 The non-single or nonisolated numbers. The union of non-single (or nonisolated or twin) primes and non-single (or nonisolated) nonprimes.

This page as a plain text file.
%I A167707 #13 Jul 07 2016 04:27:24
%S A167707 0,1,3,5,7,8,9,10,11,13,14,15,16,17,19,20,21,22,24,25,26,27,28,29,31,
%T A167707 32,33,34,35,36,38,39,40,41,43,44,45,46,48,49,50,51,52,54,55,56,57,58,
%U A167707 59,61,62,63,64,65,66,68,69,70,71,73,74,75,76,77,78,80,81,82,84,85,86,87
%N A167707 The non-single or nonisolated numbers. The union of non-single (or nonisolated or twin) primes and non-single (or nonisolated) nonprimes.
%C A167707 A167707 = A001097 U A164276. A167706 U A167707 = A001477.
%H A167707 G. C. Greubel, <a href="/A167707/b167707.txt">Table of n, a(n) for n = 1..1000</a>
%F A167707 a(n) = n + n / log n + O(n / (log n)^2) by Brun's theorem. [_Charles R Greathouse IV_, Mar 15 2011]
%p A167707 isA001097 := proc(n) isprime(n) and (isprime(n+2) or isprime(n-2)) ; end proc: isA164276 := proc(n) not isprime(n) and ( not isprime(n+1) or not isprime(n-1) ) ; end proc: isA167707 := proc(n) isA001097(n) or isA164276(n) ; end proc: for n from 0 to 100 do if isA167707(n) then printf("%d,",n) ; end if; end do: # _R. J. Mathar_, Mar 18 2010
%t A167707 Union[Select[Range[0, 300], !PrimeQ[#] && (! PrimeQ[# - 1] || ! PrimeQ[# + 1]) & ], Select[Prime[Range[300]], PrimeQ[# - 2] || PrimeQ[# + 2] &]] (* _G. C. Greubel_, Jul 07 2016 *)
%Y A167707 Cf. A001097, A001477, A164276, A167706.
%K A167707 nonn
%O A167707 1,3
%A A167707 _Juri-Stepan Gerasimov_, Nov 10 2009