cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167710 a(n) = 10*2^n - 3*A083658(n+2).

This page as a plain text file.
%I A167710 #17 Jun 21 2016 02:41:48
%S A167710 1,5,13,35,79,185,397,875,1831,3905,8053,16835,34399,70985,144157,
%T A167710 294875,596311,1212305,2444293,4947635,9954319,20085785,40348717,
%U A167710 81228875,162989191,327572705,656739733,1318262435,2641307839,5296964585,10608278077,21259602875
%N A167710 a(n) = 10*2^n - 3*A083658(n+2).
%C A167710 The sequence can be defined as the row sums of the triangle T(n,k)
%C A167710 .1;
%C A167710 .3,.2;
%C A167710 .3,.6,.4;
%C A167710 .9,.6,12,.8;
%C A167710 .9,18,12,24,16;
%C A167710 27,18,36,24,48,32;
%C A167710 with left column A162436, diagonal the powers of 2, and the recurrence T(n+2,k) = 3*T(n,k).
%H A167710 G. C. Greubel, <a href="/A167710/b167710.txt">Table of n, a(n) for n = 0..1000</a>
%H A167710 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,3,-6).
%F A167710 a(n+1) - 2*a(n) = A162436(n+2).
%F A167710 a(n) = 2*a(n-1) + 3*a(n-2) - 6*a(n-3).
%F A167710 G.f.: (1+3*x)/((2*x-1) * (3*x^2-1)). - _R. J. Mathar_, Feb 27 2010
%t A167710 LinearRecurrence[{2,3,-6},{1,5,13},40] (* _Harvey P. Dale_, Oct 03 2014 *)
%K A167710 nonn,easy
%O A167710 0,2
%A A167710 _Paul Curtz_, Nov 10 2009
%E A167710 Replaced cross-references by link to the index - _R. J. Mathar_, Feb 27 2010