cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167764 a(n) is the index k of k-th prime prime(k) in the smallest concatenation "2 3 ... prime(k)" where prime(n+1) is a factor.

Original entry on oeis.org

10, 3, 5, 7, 18, 11, 58, 2, 6, 28, 177, 85, 47, 3, 191, 35, 9, 12, 40, 108, 40, 60, 69, 43, 84, 314, 29, 77, 231, 59, 76, 49, 86, 289, 5, 51, 71, 43, 269, 101, 53, 78, 42, 46, 958, 22, 5, 101, 151, 65, 198, 80, 22, 428, 363, 172, 686, 494, 399, 11, 96, 425, 277, 525
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 11 2009, Nov 13 2009

Keywords

Comments

It is conjectured that this sequence is infinite.

Examples

			a(2) = a(14) = 3 because 235 = 5 * 47 = prime(2+1) * prime(14+1) is the concatenation of the first 3 primes.
a(20) = 108 as prime(108) = 593 and the 283-digit concatenation "235...593" has prime factor 73 = prime(20+1).
		

References

  • Richard E. Crandall and Carl Pomerance, Prime Numbers, Springer, 2005.
  • Marcus du Sautoy, Die Musik der Primzahlen: Auf den Spuren des groessten Raetsels der Mathematik, Beck, Muenchen, 2004.

Programs

  • PARI
    a(n)=my(p=prime(n+1),k=2,i=0); forprime(q=3,default(primelimit),i++; if(k%p==0,return(i)); k=k*10^#Str(q)+q) \\ Charles R Greathouse IV, Apr 27 2010
    
  • Python
    from sympy import nextprime, prime
    def a(n):
        pn1 = prime(n+1)
        k, pk, s = 1, 2, "2"
        while int(s)%pn1:
            k += 1; pk = nextprime(pk); s += str(pk)
        return k
    print([a(n) for n in range(1, 65)]) # Michael S. Branicky, Oct 03 2021

Extensions

Terms past a(10) and editing by Charles R Greathouse IV, Apr 27 2010