This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167772 #19 May 27 2022 08:09:23 %S A167772 1,0,1,1,1,1,2,3,2,1,6,8,6,3,1,18,24,18,10,4,1,57,75,57,33,15,5,1,186, %T A167772 243,186,111,54,21,6,1,622,808,622,379,193,82,28,7,1,2120,2742,2120, %U A167772 1312,690,311,118,36,8,1,7338,9458,7338,4596,2476,1164,474,163,45,9,1 %N A167772 Riordan array (c(x)/(1+x*c(x)), x*c(x)), c(x) the g.f. of A000108. %H A167772 Reinhard Zumkeller, <a href="/A167772/b167772.txt">Rows n=0..125 of triangle, flattened</a> %F A167772 Sum_{k=0..n} T(n, k) = A000958(n+1). %F A167772 From _Philippe Deléham_, Nov 12 2009: (Start) %F A167772 Sum_{k=0..n} T(n,k)*2^k = A014300(n). %F A167772 Sum_{k=0..n} T(n,k)*2^(n-k) = A064306(n). (End) %F A167772 For n > 0: T(n,0) = A065602(n+1,3), T(n,k) = A065602(n+1,k+1), k = 1..n. - _Reinhard Zumkeller_, May 15 2014 %e A167772 Triangle begins: %e A167772 1; %e A167772 0, 1; %e A167772 1, 1, 1; %e A167772 2, 3, 2, 1; %e A167772 6, 8, 6, 3, 1; %e A167772 18, 24, 18, 10, 4, 1; %e A167772 57, 75, 57, 33, 15, 5, 1; %e A167772 186, 243, 186, 111, 54, 21, 6, 1; %e A167772 622, 808, 622, 379, 193, 82, 28, 7, 1; %e A167772 2120, 2742, 2120, 1312, 690, 311, 118, 36, 8, 1; %e A167772 Production matrix begins: %e A167772 0, 1; %e A167772 1, 1, 1; %e A167772 1, 1, 1, 1; %e A167772 1, 1, 1, 1, 1; %e A167772 1, 1, 1, 1, 1, 1; %e A167772 1, 1, 1, 1, 1, 1, 1; %e A167772 1, 1, 1, 1, 1, 1, 1, 1; %e A167772 1, 1, 1, 1, 1, 1, 1, 1, 1; %e A167772 1, 1, 1, 1, 1, 1, 1, 1, 1, 1; %e A167772 ... - _Philippe Deléham_, Mar 03 2013 %t A167772 A065602[n_, k_]:= A065602[n,k]= Sum[(k-1+2*j)*Binomial[2*(n-j)-k-1, n-1]/(2*(n-j) -k-1), {j, 0, (n-k)/2}]; %t A167772 T[n_, k_]:= If[k==0, A065602[n+1,3] + Boole[n==0], A065602[n+1, k+1]]; %t A167772 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, May 26 2022 *) %o A167772 (Haskell) %o A167772 import Data.List (genericIndex) %o A167772 a167772 n k = genericIndex (a167772_row n) k %o A167772 a167772_row n = genericIndex a167772_tabl n %o A167772 a167772_tabl = [1] : [0, 1] : %o A167772 map (\xs@(_:x:_) -> x : xs) (tail a065602_tabl) %o A167772 -- _Reinhard Zumkeller_, May 15 2014 %o A167772 (SageMath) %o A167772 def A065602(n,k): return sum( (k+2*j-1)*binomial(2*n-2*j-k-1, n-1)/(2*n-2*j-k-1) for j in (0..(n-k)//2) ) %o A167772 def A167772(n,k): %o A167772 if (k==0): return A065602(n+1,3) + bool(n==0) %o A167772 else: return A065602(n+1,k+1) %o A167772 flatten([[A167772(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, May 26 2022 %Y A167772 Cf. A000957, A000958 (row sums), A001558, A001559, A104629, A167769. %Y A167772 Diagonals: A000012, A000217, A001477, A166830. %K A167772 nonn,tabl %O A167772 0,7 %A A167772 _Philippe Deléham_, Nov 11 2009, corrected Nov 12 2009