This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167809 #32 May 24 2022 08:10:15 %S A167809 1,2,5,17,65,292,1434,7875,47098,305226,2122983,15752080,124015310, %T A167809 1031857395,9041908204,83186138212,801235247145,8059220936672, %U A167809 84463182889321 %N A167809 Number of admissible bases in the postage stamp problem for n denominations and h = 2 stamps. %C A167809 A basis 1 = b_1 < b_2 ... < b_n is admissible if all the values 1 <= x <= b_n are obtainable as a sum of at most h (not necessarily distinct) numbers in the basis. %C A167809 Conjecture: a(n) >= A000108(n). - _Michael Chu_, May 16 2022 %D A167809 R. K. Guy, Unsolved Problems in Number Theory, C12. %H A167809 R. Alter and J. A. Barnett, <a href="http://www.jstor.org/stable/2321610">A postage stamp problem</a>, Amer. Math. Monthly, 87 (1980), 206-210. %H A167809 M. F. Challis, <a href="http://dx.doi.org/10.1093/comjnl/36.2.117">Two new techniques for computing extremal h-bases A_k</a>, Comp J 36(2) (1993) 117-126 %H A167809 Erich Friedman, <a href="https://erich-friedman.github.io/mathmagic/0403.html">Postage stamp problem</a> %H A167809 J. Kohonen, <a href="http://arxiv.org/abs/1403.5945">A meet-in-the-middle algorithm for finding extremal restricted additive 2-bases</a>, arXiv preprint arXiv:1403.5945 [math.NT], 2014 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Kohonen2/kohonen5.html">J. Int. Seq. 17 (2014) # 14.6.8</a>. %H A167809 J. Kohonen, <a href="http://arxiv.org/abs/1503.03416">Early Pruning in the Restricted Postage Stamp Problem</a>, arXiv preprint arXiv:1503.03416 [math.NT], 2015. %H A167809 W. F. Lunnon, <a href="https://doi.org/10.1093/comjnl/12.4.377">A postage stamp problem</a>, Comput. J. 12 (1969) 377-380. %H A167809 S. Mossige, <a href="https://doi.org/10.1090/S0025-5718-1981-0606515-1">Algorithms for Computing the h-Range of the Postage Stamp Problem</a>, Math. Comp. 36 (1981) 575-582. %Y A167809 Other enumerations with different parameters: A167809 (h = 2), A167810 (h = 3), A167811 (h = 4), A167812 (h = 5), A167813 (h = 6), A167814 (h = 7). %Y A167809 For h = 2, cf. A008932. %K A167809 hard,more,nonn %O A167809 1,2 %A A167809 Yogy Namara (yogy.namara(AT)gmail.com), Nov 12 2009 %E A167809 a(17) from simple depth-first search by _Jukka Kohonen_, Jun 16 2016 %E A167809 a(18)-a(19) from depth-first search by _Jukka Kohonen_, Jul 30 2016