This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167812 #3 Aug 14 2020 13:50:34 %S A167812 1,5,45,750,20881,880325,54329413,4727396109,563302698378 %N A167812 Number of admissible basis in the postage stamp problem for n denominations and h = 5 stamps. %C A167812 A basis 1 = b_1 < b_2 ... < b_n is admissible if all the values 1 <= x <= b_n is obtainable as a sum of at most h (not necessarily distinct) numbers in the basis. %D A167812 R. K. Guy, Unsolved Problems in Number Theory, C12. %H A167812 R. Alter and J. A. Barnett, <a href="http://www.jstor.org/stable/2321610">A postage stamp problem</a>, Amer. Math. Monthly, 87 (1980), 206-210. %H A167812 M. F. Challis, <a href="http://dx.doi.org/10.1093/comjnl/36.2.117">Two new techniques for computing extremal h-bases A_k</a>, Comp J 36(2) (1993) 117-126 %H A167812 Erich Friedman, <a href="https://erich-friedman.github.io/mathmagic/0403.html">Postage stamp problem</a> %H A167812 W. F. Lunnon, <a href="http://comjnl.oxfordjournals.org/cgi/content/abstract/12/4/377">A postage stamp problem</a>, Comput. J. 12 (1969) 377-380. %H A167812 S. Mossige, <a href="http://www.jstor.org/stable/2007661">Algorithms for Computing the h-Range of the Postage Stamp Problem</a>, Math. Comp. 36 (1981) 575-582 %Y A167812 Other enumerations with different parameters: A167809 (h = 2), A167810 (h = 3), A167811 (h = 4), A167812 (h = 5), A167813 (h = 6), A167814 (h = 7). %Y A167812 For h = 2, cf. A008932. %K A167812 hard,more,nonn %O A167812 1,2 %A A167812 Yogy Namara (yogy.namara(AT)gmail.com), Nov 12 2009