This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167825 #16 Sep 08 2022 08:45:48 %S A167825 220,74801,25432120,8646845999,2939902207540,999558103717601, %T A167825 339846815361776800,115546917664900394399,39285612159250772318860, %U A167825 13356992587227597688018001,4541338194045223963153801480 %N A167825 Subsequence of A167709 whose indices are congruent to 4 mod 5, i.e., a(n) = A167709(5*n+4). %H A167825 G. C. Greubel, <a href="/A167825/b167825.txt">Table of n, a(n) for n = 0..100</a> %H A167825 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (340,-1). %F A167825 a(n+2) = 340*a(n+1) - a(n). %F A167825 a(n+1) = 170*a(n) + 39*sqrt(19*(w(n))^2 + 81). %F A167825 G.f.: (220 + x)/(1 - 340*x + x^2). %F A167825 a(n) = ((959*sqrt(19) + 4180)/38)*(170 + 39*sqrt(19))^n + ((-959*sqrt(19) + 4180)/38)*(170 - 39*sqrt(19))^n. %e A167825 a(0) = A167709(4) = 220, a(1) = A167709(9) = 74801. %p A167825 w(0):=220:for n from 0 to 20 do w(n+1):=170*w(n)+39*sqrt(19*(w(n))^2+81) :od: seq(w(n),n=0..20);for n from 0 to 20 do u(n):=simplify((959*sqrt(19)+4180)/38*(170+39*sqrt(19))^(n)+(-959*sqrt(19)+4180)/38*(170-39*sqrt(19))^(n)):od:seq(u(n),n=0..20);taylor(((220+74801*z-220*340*z)/(1-340*z+z^2)),z=0,21); %t A167825 LinearRecurrence[{340, -1}, {220, 74801}, 50] (* _G. C. Greubel_, Jun 27 2016 *) %t A167825 RecurrenceTable[{a[1] == 220, a[2] == 74801, a[n] == 340 a[n-1] - a[n-2]}, a, {n, 15}] (* _Vincenzo Librandi_, Jun 28 2016 *) %o A167825 (Magma) I:=[220,74801]; [n le 2 select I[n] else 340*Self(n-1)-Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Jun 28 2016 %K A167825 nonn,easy %O A167825 0,1 %A A167825 _Richard Choulet_, Nov 13 2009