This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167869 #16 Jun 06 2021 09:01:51 %S A167869 1,12,264,9056,379224,17519904,858968640,43860112128,2307187351512, %T A167869 124161781334048,6803252453289408,378260174003539200, %U A167869 21287072393719585216,1210206988807094340864,69402141007670673363456 %N A167869 a(n) = 4^n * Sum_{k=0..n} binomial(2*k,k)^3 / 4^k. %C A167869 The expression a(n) = B^n*Sum_{k=0..n} binomial(2*k,k)/B^k gives A006134 for B=1, A082590 (B=2), A132310 (B=3), A002457 (B=4), A144635 (B=5), A167713 (B=16). %C A167869 The expression a(n) = B^n*Sum_{k=0..n} binomial(2*k,k)^3/B^k gives A079727 for B=1, A167867 (B=2), A167868 (B=3), A167869 (B=4), A167870 (B=16), A167871 (B=64). %H A167869 Vincenzo Librandi, <a href="/A167869/b167869.txt">Table of n, a(n) for n = 0..200</a> %F A167869 a(n) = 4^n * Sum_{k=0..n} binomial(2*k,k)^3 / 4^k. %F A167869 Recurrence: n^3*a(n) = 4*(17*n^3 - 24*n^2 + 12*n - 2)*a(n-1) - 32*(2*n-1)^3*a(n-2). - _Vaclav Kotesovec_, Aug 13 2013 %F A167869 a(n) ~ 2^(6*n+4)/(15*(Pi*n)^(3/2)). - _Vaclav Kotesovec_, Aug 13 2013 %t A167869 Table[4^n Sum[Binomial[2k,k]^3/4^k,{k,0,n}],{n,0,30}] (* _Vincenzo Librandi_, Mar 26 2012 *) %Y A167869 Cf. A079727, A167867, A167868, A167869, A167870, A167872. %Y A167869 Cf. A000984, A066796, A006134, A082590, A132310, A002457, A144635, A167713, A167859. %K A167869 nonn %O A167869 0,2 %A A167869 _Alexander Adamchuk_, Nov 14 2009 %E A167869 More terms from _Sean A. Irvine_, Apr 27 2010