This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167884 #14 Mar 18 2022 02:50:53 %S A167884 1,1,1,1,18,1,1,179,179,1,1,1636,6086,1636,1,1,14757,144362,144362, %T A167884 14757,1,1,132854,2941135,7218100,2941135,132854,1,1,1195735,55446309, %U A167884 277509955,277509955,55446309,1195735,1,1,10761672,1001178268,9211047544,18315657030,9211047544,1001178268,10761672,1 %N A167884 Triangle read by rows: T(n,k) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = 8. %H A167884 G. C. Greubel, <a href="/A167884/b167884.txt">Rows n = 1..50 of the triangle, flattened</a> %H A167884 G. Strasser, <a href="http://dx.doi.org/10.1017/S0305004110000538">Generalisation of the Euler adic</a>, Math. Proc. Camb. Phil. Soc. 150 (2010) 241-256, Triangle A_8(n,k) %F A167884 T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), with T(n, 1) = T(n, n) = 1, and m = 8. %F A167884 Sum_{k=1..n} T(n, k) = A084948(n-1). %e A167884 Triangle begins as: %e A167884 1; %e A167884 1, 1; %e A167884 1, 18, 1; %e A167884 1, 179, 179, 1; %e A167884 1, 1636, 6086, 1636, 1; %e A167884 1, 14757, 144362, 144362, 14757, 1; %e A167884 1, 132854, 2941135, 7218100, 2941135, 132854, 1; %e A167884 1, 1195735, 55446309, 277509955, 277509955, 55446309, 1195735, 1; %t A167884 T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k-m+1)*T[n-1, k, m]]; %t A167884 A167884[n_, k_]:= T[n,k,8]; %t A167884 Table[A167884[n, k], {n,12}, {k,n}]//Flatten (* modified by _G. C. Greubel_, Mar 18 2022 *) %o A167884 (Sage) %o A167884 @CachedFunction %o A167884 def T(n,k,m): %o A167884 if (k==1 or k==n): return 1 %o A167884 else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m) %o A167884 def A167884(n,k): return T(n,k,8) %o A167884 flatten([[ A167884(n,k) for k in (1..n)] for n in (1..15)]) # _G. C. Greubel_, Mar 18 2022 %Y A167884 For m = ...,-2,-1,0,1,2,3,4,5,6,7,8, ... we get ..., A225372, A144431, A007318, A008292, A060187, A142458, A142459, A142460, A142461, A142462, A167884, ... %Y A167884 Cf. A084948 (row sums). %K A167884 nonn,tabl,easy %O A167884 1,5 %A A167884 _Roger L. Bagula_, Nov 14 2009 %E A167884 Edited by _N. J. A. Sloane_, May 08 2013